研究生: |
林侑賢 Lin, You Sain |
---|---|
論文名稱: |
低漏電流與低導通電壓之矽基板氮化鎵蕭特基二極體 GaN Schottky Barrier Diodes on Si Substrate with Low Leakage Current and Low Turn On Voltage |
指導教授: |
徐碩鴻
Hsu, Shuo-Hung |
口試委員: |
錢皓哲
謝光前 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 氮化鎵 、蕭特基二極體 、氮氣電漿處理 、雙金屬陽極 |
外文關鍵詞: | GaN, Schottky barrier diode, nitrogen plasma treatment, dual metal andoe |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮化鎵屬於寬能隙(3.4 eV)材料、材料本身熱穩定性佳、能夠承受高臨界電場(3MV/cm)以及擁有高電子飽和速度(1~3×107cm/s),適合用於高溫高壓操作之下,在高功率元件的應用具有相當之優勢,因此近年來以氮化鋁鎵/氮化鎵材料為主的電子元件受到重視,像是高電子遷移率電晶體(High electron mobility transistor)或是蕭特基二極體(Schottky barrier diode)引起熱門的討論和發展,當中以GaN-on-Silicon為主,可使用傳統CMOS產線來生產引起廣大興趣。本論文主要以氮化鋁鎵/氮化鎵蕭特基二極體於矽基板上研究為主,包含了元件之設計、製造、量測、分析。共分為兩個主題,首先為氮氣電漿處理(Nitrogen plasma treatment)和蕭特基掘入(Schottky recess)降低導通電壓,導通電壓從約0.9V降低致0.35V和使用30W、300C氮氣電漿對元件進行表面處理,漏電流從10-5A/mm降低至10-7A/mm,下降了大約2~3個數量級,有效地改善漏電流,減少表面氮空缺(Nitrogen vacancy)等相關缺陷,處理過後的元件片電阻下降約50Ω/□,也相對有較小的導通電阻,較大的順向電流和崩潰電壓超過1100V。
另個主題為雙陽極蕭特基金屬,利用低功函數的鈦金屬降低二極體的導通電壓,而高功函數的鎳作用為抑制漏電流,利用此結構有效地導通電壓約從1.2V降低0.8V上下,但會得到較大的漏電流約10-5A/mm,與傳統單一鎳金屬陽極相比大了約2個數量級,由於等效的蕭特基能障(Schottky barrier height)較小,因此鈦金屬長度比例越大,漏電流越大,導通電壓越小,而鎳金屬長度比例越大,較能夠抑制漏電流。
The properties of gallium nitride are suitable for operation under high temperature and high voltage, mainly because of the wide bandgap(3.4eV), good thermal stability, high critical electric field(3.4MV/cm) ,and high electron saturation velocity(2×107cm/s) of the material.
These advantages make gallium nitride excellent for the applications of high frequency and high power devices. The gallium nitride based device such as high electron mobility transistor (HEMT) and Schottky barrier diode (SBD) have been widely discussed and developed in recent years. Especially, the GaN-on-Silicon devices with the compatibility of CMOS process attract significant attention. This thesis presents the study of AlGaN/GaN Schottky barrier diodes on the silicon substrate, involving device design, manufacturing, measurement and, analysis.
There are two main topics included in this thesis. Frist, the AlGaN/GaN SBDs with nitrogen plasma treatment and Schottky recess is discussed. The turn-on voltage can be decreased from 0.9 V to 0.35 V, and the leakage current decreased from 10-5A/mm to 107A/mm by using nitrogen plasma treatment with 30W at 300C. The proposed method effectively improves the leakage current and reduces the surface nitrogen vacancy and other related defects. After treatment, the device sheet resistance decreases by about 50Ω/□ with a relatively small on-resistance. A large forward current and breakdown voltage over 1100V can be achieved.
Another topic is the SBDs with a dual Schottky metal anode. The use of a low work function -of titanium can reduce the turn-on voltage of the diode. On the other hand, the nickel as a high work function can suppress the leakage current. This dual-metal structure effectively reduces the turn-on voltage from about 1.2 V to 0.8 V. But the devices suffer an increased leakage current by about two orders to be about 10-5A/mm, compared with the traditional single nickel anode devices, due to the smaller equivalent Schottky barrier height. Therefore, the larger ratio of Ti/Ni of the anode results in larger leakage current and smaller VON. In contrast, with a smaller ratio of Ti/Ni, the leakage current can be suppressed.
.
[1] S. Heck, A. Bräckle, M. Berroth, S. Maroldt , R. Quay., “A high-power dual gate GaN switching-amplifier in GHz-range,” Wireless and Microwave Technology Conference (WAMICON), 2011 IEEE 12th Annual., pp.1-4, 2011.
[2] U. K. Mishra, L. Shen, T. E. Kazior, Y.- F. Wu., “GaN-Based RF power devices and amplifiers,” Proceedings of the IEEE , vol. 96, no. 2, pp. 287-305. 2008.
[3] S. Lenci et al., “Au-free AlGaN/GaN power diode on 8-in Si substrate with gated edge termination,” IEEE Electron Device Letters., vol. 34, no. 8, pp. 1035-1037, 2013.
[4] D. Marcon et al., “Manufacturing challenges of GaN-on-Si HEMTs in a 200 mm CMOS fab,” IEEE Transactions on Semiconductor Manufacturing., vol. 26, no. 3, pp. 361-367, Aug. 2013.
[5] T. Hashizume et al., “Surface control process of AlGaN for suppression of gate leakage currents in AlGaN/GaN heterostructure field effect transistors”, Japanese J. Applied Physics 45., vol. 45, no. 4, pp. L111113, 2006
[6] S. C. Liu, G. M. Dai, E. Y. Chang., “Improved reliability of GaN HEMTs using N2 plasma surface treatment ,’’ 2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits., pp. 378-380, Jul. 2015.
[7] Y.-W. Lian, Y.-S. Lin, J.-M. Yang, C.-H. Cheng, and Shawn S. H. Hsu, “AlGaN/GaN Schottky barrier diodes on silicon substrates with selective Si diffusion for low onset voltage and high reverse blocking,’’ IEEE Electron Device Letters, vol. 34, no. 8, pp. 981-983, Aug. 2013.
[8] Y. Yao et al., “Current transport mechanism of AlGaN/GaN Schottky barrier diode with fully recessed Schottky anode,” Japanese Journal of Applied Physics., vol. 54, Jan. 2015.
[9] O. Ambacher et al., “Growth and applications of group III-nitrides,” Journal of
Physics D (Applied Physics)., vol. 31, pp. 2653-2710, 1998.
[10] M. Willander et al., “Silicon carbide and diamond for high temperature devices
applications,” Journal of materials science: materials in electronics., pp. 1-25, 2006.
[11] B. Gelmont et al., “Monte Carlo simulation of electron transport in gallium
nitride,” J. Appl. Phys., vol. 74, no. 3, pp. 1818-1821, 1993.
[12] B.J. Baliga, “Semiconductors for high voltage vertical channel field effect transistors,” J. Appl Phys , vol. 53, pp. 1759-1764, 1982.
[13] J. L. Hudgins et al., “An assessment of wide bandgap semiconductors for power devices,” IEEE Transactions on power electronics, vol. 18, no. 3, pp. 907-914, May. 2003.
[14] O. Ambacher et al., “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,’’ Journal of Applied Physics, vol. 85, no. 6, pp. 3222-3233, Mar. 1999.
[15] S. L. Selvaraj et al., “1.4-kV breakdown voltage for AlGaN/GaN high-electron mobility transistors on silicon substrate,’’ IEEE Electron Device Letters., vol. 33, no. 10, pp. 1375-1377, Oct. 2012.
[16] M. G. Ganchenkova and R. M. Nieminen “Nitrogen vacancies as major point defects in gallium nitride,” Phys. Rev. Lett., vol. 96, no. 19, pp. 196402, May. 2012.
[17] Z. H. Liu, G. I. Ng, H. Zhou, S. Arulkumaran, Y.K. Maung “Reduced surface leakage current and trapping effects in AlGaN/GaN high electron mobility transistor on silicon with SiN/Al2O3 passivation,” Applied Physics Letters., pp. 113506, Mar. 2011.
[18] A. Edwards et al., “Improved reliability of AlGaN-GaN HEMTs using an NH3 plasma treatment prior to SiN passivation,’’ IEEE Electron Device Letters., vol. 26, no. 4, pp. 225-227, April. 2005.
[19] G. Vanko et al., “Impact of SF6 plasma on DC and microwave performance of AIGaN/GaN HEMT structures,’’ Advanced Semiconductor Devices and Microsystems (ASDAM), pp. 335-338, Oct. 2008.
[20] S.-C. Liu, B.-Y. Chen, Y.-C. Lin, T.-E. Hsieh, H.-C. Wang, and E.Y. Chang, “GaN MIS-HEMTs with nitrogen passivation for power device applications,” IEEE Electron Device Letters., vol. 35, no. 10, pp. 1001-1003, Oct. 2014.
[21] J. Y. Shiu et al., “Oxygen ion implantation isolation planar process for AlGaN/GaN HEMTs,” IEEE Electron Device Letters, vol. 28, no. 6, pp. 476-478, Jun. 2007.
[22] B. Boudart et al., “Raman characterization of Mg+ ion-implanted GaN,” J. Phys. Condens Matter, vol. 16, no. 2, pp. s49-s55, Jan. 2004.
[23] T. Oishi et al., “Highly resistive GaN layers formed by ion implantation of Zn along the c-axis,” J. Appl. Phys., vol. 94, no. 3, pp. 1662-1666, Aug. 2003.
[24] A.Vertiatchikh et al., “Structural properties of alloyed Ti/Al/Ti/Au and Ti/Al/Mo/Au Ohmic contacts to AlGaN/GaN,” Solid-State Electronics., vol. 50, no. 7-8, pp. 1452-1429, Aug. 2006.
[25] A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute, S. Noor Mohammad “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN,” Applied Physics Letters., vol. 93, no. 2, pp. 1087-1094, Mar. 2013.
[26] Z. Yang, K. Li, J. Alperin, and W. I. Wang, “Nitrogen vacancy as the donor: experimental evidence in the ammonia-assisted molecular beam epitaxy of GaN,”J. Electrochem. Soc., vol. 144, no. 10, pp. 3474-3476, Oct.1997.
[27] Y. Lin et al., “Schottky barrier height and nitrogen-vacancy-related defects in Ti alloy,” J. Appl. Phys., vol. 95, no. 2, pp. 571-575, Jun. 2004.
[28] A. Edwards et al., “Improved reliability of AlGaN-GaN HEMTs using an NH3 plasma treatment prior to SiN passivation,’’ IEEE Electron Device Letters., vol. 26, no. 4, pp. 225-227, April. 2005
[29] C. Rongming et al., “Plasma treatment for leakage reduction in AlGaN/GaN and GaN Schottky contacts,’’ IEEE Electron Device Letters., vol. 29, no. 4, pp. 297-299, Arpil. 2008.
[30] G. Vanko et al., “Impact of SF6 plasma on DC and microwave performance of AIGaN/GaN HEMT structures,’’ Advanced Semiconductor Devices and Microsystems (ASDAM), pp. 335-338, Oct. 2008.
[31] M.Tajimaand and T. Hashizume “Impact of gate and passivation structures on current collapse of AlGaN/GaN high-electron-mobility transistors under off-state-bias stress,” J. Appl. Phys., vol. 50, pp. 061001, Jun. 2011.
[32] S. Huang et al., “Effective passivation of AlGaN/GaN HEMTs by ALD-grown AlN think film,” IEEE Electron Device Letters., vol. 33, no. 4, pp. 516-518, Apr. 2012.
[33] R. Fitch et al., “Comparison of passivation layers for AlGaN/GaN high electron mobility transistors,” J. Vac. Sci. Technol., B, vol. 29, no. 6, pp. 061204, Oct. 2011.
[34] T. Hashizume et al., “Leakage mechanism in GaN and AlGaN Schottky interfaces,” Appl. Phys. Lett., vol. 84, no. 24, pp. 4884-4886, Jun. 2004.
[35] C.Tang et al., “Buffer leakage induced pre-breakdown mechanism for AlGaN/GaN HEMTs on Si,” Communications, Circuits and Systems (ICCCAS), 2013 International Conference., vol. 2, pp. 353-357, Nov. 2013.
[36] J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, J. S. Speck, “Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates,” Applied Physics Letters., vol. 81, pp. 79 - 81, 2002.
[37] T.-F. Chang, C.-F. Huang, T.-Y. Yang, C.-W. Chiu, T.-Y. Huang, K.-Y. Lee, F. Zhao “Low turn-on voltage dual metal AlGaN/GaN Schottky barrier diode,” Solid-State Electronics., pp. 12-15, 2015.