研究生: |
徐維 Hsu, Wei |
---|---|
論文名稱: |
利用組胺酸-金屬配位鍵與cation-π作用力來進行膠原蛋白自組裝之探討 Self-Assembly of Mimetic Collagen Peptides via Histidine-Metal Coordination and Cation-π Interactions |
指導教授: |
洪嘉呈
Horng, Jia-Cherng |
口試委員: |
楊家銘
吳淑褓 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 膠原蛋白 、自組裝 、組胺酸-金屬配位鍵 、陽離子-π作用力 |
外文關鍵詞: | collagen, self-assembly, histidine-metal coordination, cation-π interaction |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
膠原蛋白是哺乳動物中含量最豐富的蛋白質,現今已廣泛應用於生醫材料上,為了增加其應用性,需要尋找更有效的製備方法使短的模擬膠原蛋白胜肽能夠進行自組裝以形成高階結構,本實驗中我們利用兩種策略誘發膠原蛋白自組裝。首先,我們將組胺酸引入模擬膠原蛋白胜肽,在含有金屬離子的溶液中,藉由組胺酸與金屬離子的配位關係誘發膠原蛋白胜肽自組裝形成高階超分子結構,而此自組裝過程在加入金屬離子螯合劑 EDTA 後即進行逆反應使高階結構瓦解。實驗結果顯示組胺酸與金屬離子的配位鍵能提供有效的作用力誘發模擬膠原蛋白胜肽自組裝成高階大尺度結構,而且藉由調整配位條件可以改變此高階結構的形貌。
另外,我們引入cation-π 作用力,在模擬膠原蛋白胜肽氮端和碳端分別加入精胺酸和苯丙胺酸,期望這兩種胺基酸間能在模擬胜肽分子間形成 cation-π 作用力,而促進膠原蛋白胜肽進行自組裝。實驗結果顯示模擬膠原蛋白胜肽能快速地以頭接尾方式自組裝形成高階纖維狀結構,說明藉由 cation-π 作用力能成功誘發膠原蛋白胜肽自組裝,而此結果提供了另一個簡單且有效率的方法來製備膠原蛋白相關的生醫材料。
Collagen, the most abundant protein in mammals, has been widely used in biomedical materials. Searching for an effective way to assemble short mimetic collagen peptides into a higher order structure has been an emerging topic for the preparation of collagen-related biomaterials. In this work, we have incorporated histidine residue into two mimetic collagen peptides to promote the self-assembly of short collagen triple helices into supermolecular structure via His-metal coordination. Our results indicate that His-metal coordination can serve as an effective force to assemble mimetic collagen peptides into large scale structures and their topology depends on metal ions and His-metal coordination sites. Furthermore, the process of self-assembly can be reversed upon adding the cation chelator, EDTA, in solution.
In addition, we have introduced a cationic residue into the N-terminus and an aromatic residue into the C-terminus of a collagen-related peptide which can generate favorable cation-π interactions between the termini of collagen triple helices. The experimental results demonstrate that cation-π interactions can promote the self-assembly of collagen triple helices into higher-order fibril structures in a head-to-tail manner. The work shows that cation-π interactions can serve as an effective force in preparing collagen-related biomaterials.
1. (a) 黃彥富; 湯正明; 徐善慧, 揭開膠原蛋白的神秘面紗. 科學發展期刊 2004, 380, 4; (b) 洪雅萍, 膠原蛋白產品的功效. 科學發展期刊 2004, 380, 6; (c) Lodish, H. F., Molecular cell biology. 4th ed.; W.H. Freeman: New York, 2000; p xxxvi, 1084, G-17, I-36 p.
2. (a) Prockop, D. J.; Kivirikko, K. I., Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 1995, 64, 403-34; (b) Prockop, D. J., What holds us together? Why do some of us fall apart? What can we do about it? Matrix Biol. 1998, 16, 519-28; (c) Prockop, D. J., Hopkins Memorial Medal lecture. Pleasant surprises en route from the biochemistry of collagen to attempts at gene therapy. Biochem. Soc. Trans. 1999, 27, 15-31.
3. (a) Bella, J.; Brodsky, B.; Berman, H. M., Hydration structure of a collagen peptide. Structure 1995, 3, 893-906; (b) Bella, J.; Eaton, M.; Brodsky, B.; Berman, H. M., Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science 1994, 266, 75-81.
4. Brodsky, B.; Ramshaw, J. A., The collagen triple-helix structure. Matrix Biol. 1997, 15, 545-54.
5. Shoulders, M. D.; Raines, R. T., Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929-58.
6. (a) Kearney, P. C.; Mizoue, L. S.; Kumpf, R. A.; Forman, J. E.; McCurdy, A.; Dougherty, D. A., Molecular recognition in aqueous media. New binding studies provide further insights into the cation-.pi. interaction and related phenomena. J. Am. Chem. Soc. 1993, 115, 9907-9919; (b) Shoulders, M. D.; Satyshur, K. A.; Forest, K. T.; Raines, R. T., Stereoelectronic and steric effects in side chains preorganize a protein main chain. Proc. Natl. Acad. Sci. USA 2010, 107, 559-64.
7. Hinderaker, M. P.; Raines, R. T., An electronic effect on protein structure. Protein Sci. 2003, 12, 1188-94.
8. Okuyama, K., Revisiting the molecular structure of collagen. Connect Tissue Res. 2008, 49, 299-310.
9. (a) Long, C. G.; Li, M. H.; Baum, J.; Brodsky, B., Nuclear magnetic resonance and circular dichroism studies of a triple-helical peptide with a glycine substitution. J. Mol. Biol. 1992, 225, 1-4; (b) Kramer, R. Z.; Bella, J.; Mayville, P.; Brodsky, B.; Berman, H. M., Sequence dependent conformational variations of collagen triple-helical structure. Nat Struct Biol 1999, 6, 454-7.
10. Rich, A.; Crick, F. H., The molecular structure of collagen. J. Mol. Biol. 1961, 3, 483-506.
11. Okuyama, K.; Nagarajan, V.; Kamitori, S., 7/2-Helical model for collagen — Evidence from model peptides. J. Chem. Sci. 1999, 111, 19-34.
12. (a) Bear, R. S., The structure of collagen fibrils. Adv. Protein. Chem. 1952, 7, 69-160; (b) Cohen, C.; Bear, R. S., Helical polypeptide chain configuration in collagen I. J. Am. Chem. Soc. 1953, 75, 2783-2784.
13. Persikov, A. V.; Ramshaw, J. A.; Kirkpatrick, A.; Brodsky, B., Amino acid propensities for the collagen triple-helix. Biochemistry 2000, 39, 14960-7.
14. (a) Orgel, J. P.; Wess, T. J.; Miller, A., The in situ conformation and axial location of the intermolecular cross-linked non-helical telopeptides of type I collagen. Structure 2000, 8, 137-42; (b) Eyre, D. R.; Paz, M. A.; Gallop, P. M., Cross-linking in collagen and elastin. Annu. Rev. Biochem. 1984, 53, 717-48.
15. Rele, S.; Song, Y.; Apkarian, R. P.; Qu, Z.; Conticello, V. P.; Chaikof, E. L., D-periodic collagen-mimetic microfibers. J. Am. Chem. Soc. 2007, 129, 14780-7.
16. Whitesides, G. M.; Boncheva, M., Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. USA 2002, 99, 4769-74.
17. Przybyla, D. E.; Chmielewski, J., Higher-order assembly of collagen peptides into nano- and microscale materials. Biochemistry 2010, 49, 4411-9.
18. (a) Kotch, F. W.; Raines, R. T., Self-assembly of synthetic collagen triple helices. Proc. Natl. Acad. Sci. USA 2006, 103, 3028-33; (b) Werten, M. W.; Teles, H.; Moers, A. P.; Wolbert, E. J.; Sprakel, J.; Eggink, G.; de Wolf, F. A., Precision gels from collagen-inspired triblock copolymers. Biomacromolecules 2009, 10, 1106-13.
19. Johnson, G.; Jenkins, M.; McLean, K. M.; Griesser, H. J.; Kwak, J.; Goodman, M.; Steele, J. G., Peptoid-containing collagen mimetics with cell binding activity. J. Biomed. Mater. Res. 2000, 51, 612-24.
20. (a) Cejas, M. A.; Chen, C.; Kinney, W. A.; Maryanoff, B. E., Nanoparticles that display short collagen-related peptides. Potent stimulation of human platelet aggregation by triple helical motifs. Bioconjug. Chem. 2007, 18, 1025-7; (b) Smethurst, P. A.; Onley, D. J.; Jarvis, G. E.; O'Connor, M. N.; Knight, C. G.; Herr, A. B.; Ouwehand, W. H.; Farndale, R. W., Structural basis for the platelet-collagen interaction: the smallest motif within collagen that recognizes and activates platelet Glycoprotein VI contains two glycine-proline-hydroxyproline triplets. J. Biol. Chem. 2007, 282, 1296-304.
21. Mo, X.; An, Y.; Yun, C. S.; Yu, S. M., Nanoparticle-assisted visualization of binding interactions between collagen mimetic peptide and collagen fibers. Angew. Chem. Int. Ed. Engl. 2006, 45, 2267-70.
22. (a) Dougherty, D. A., Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 1996, 271, 163-8; (b) Dougherty, D. A.; Stauffer, D. A., Acetylcholine binding by a synthetic receptor: implications for biological recognition. Science 1990, 250, 1558-60.
23. (a) Mecozzi, S.; West, A. P., Jr.; Dougherty, D. A., Cation-pi interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. Proc. Natl. Acad. Sci. USA 1996, 93, 10566-71; (b) Ma, J. C.; Dougherty, D. A., The Cationminus signpi Interaction. Chem. Rev. 1997, 97, 1303-1324; (c) Mecozzi, S.; West, A. P.; Dougherty, D. A., Cation−π Interactions in Simple Aromatics: Electrostatics Provide a Predictive Tool. J. Am. Chem. Soc. 1996, 118, 2307-2308.
24. Wheeler, S. E.; Houk, K. N., Substituent effects in cation/pi interactions and electrostatic potentials above the centers of substituted benzenes are due primarily to through-space effects of the substituents. J. Am. Chem. Soc. 2009, 131, 3126-7.
25. Caldwell, J. W.; Kollman, P. A., Cation-.pi. Interactions: Nonadditive Effects Are Critical in Their Accurate Representation. J. Am. Chem. Soc. 1995, 117, 4177-4178.
26. Meot-Ner, M.; Deakyne, C. A., Unconventional ionic hydrogen bonds. 2. NH+.cntdot..cntdot..cntdot..pi.. Complexes of onium ions with olefins and benzene derivatives. J. Am. Chem. Soc. 1985, 107, 474-479.
27. (a) Sunner, J.; Nishizawa, K.; Kebarle, P., Ion-solvent molecule interactions in the gas phase. The potassium ion and benzene. The Journal of Physical Chemistry 1981, 85, 1814-1820; (b) R. W. Taft, F. A., J.-F. Gal, S. Walsh, M. Capon, M. C. Holmes, K. Hosn, G. Oloumi, R. Vasanwala and S. Yazdani, Free energies of cation-molecule complex formation and cation-solvent transfers. Pure Appl. Chem. 1990, 62, 17-23.
28. Shepodd, T. J.; Petti, M. A.; Dougherty, D. A., Tight, oriented binding of an aliphatic guest by a new class of water-soluble molecules with hydrophobic binding sites. J. Am. Chem. Soc. 1986, 108, 6085-6087.
29. Murayama, K.; Aoki, K., Molecular recognition involving multiple cation-[small pi] interactions: the inclusion of the acetylcholine trimethylammonium moiety in resorcin[4]arene. Chem. Commun. 1997, 119-120.
30. Chipot, C.; Maigret, B.; Pearlman, D. A.; Kollman, P. A., Molecular Dynamics Potential of Mean Force Calculations: A Study of the Toluene−Ammonium π-Cation Interactions. J. Am. Chem. Soc. 1996, 118, 2998-3005.
31. Aoki, K.; Murayama, K.; Nishiyama, H., Cation-[small pi] interaction between the trimethylammonium moiety and the aromatic ring within lndole-3-acetic acid choline ester, a model compound for molecular recognition between acetylcholine and its esterase: an X-ray study. Chem. Commun. 1995, 2221-2222.
32. Beene, D. L.; Brandt, G. S.; Zhong, W.; Zacharias, N. M.; Lester, H. A.; Dougherty, D. A., Cation-pi interactions in ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcholine receptors: the anomalous binding properties of nicotine. Biochemistry 2002, 41, 10262-9.
33. (a) Brocchieri, L.; Karlin, S., Geometry of interplanar residue contacts in protein structures. Proc. Natl. Acad. Sci. USA 1994, 91, 9297-301; (b) Karlin, S.; Zuker, M.; Brocchieri, L., Measuring residue associations in protein structures. Possible implications for protein folding. J. Mol. Biol. 1994, 239, 227-48.
34. (a) Singh, J.; Thornton, J. M., SIRIUS. An automated method for the analysis of the preferred packing arrangements between protein groups. J. Mol. Biol. 1990, 211, 595-615; (b) Mitchell, J. B.; Nandi, C. L.; McDonald, I. K.; Thornton, J. M.; Price, S. L., Amino/aromatic interactions in proteins: is the evidence stacked against hydrogen bonding? J. Mol. Biol. 1994, 239, 315-31.
35. (a) Burley, S. K.; Petsko, G. A., Amino-aromatic interactions in proteins. FEBS Lett. 1986, 203, 139-43; (b) Burley, S. K.; Petsko, G. A., Weakly polar interactions in proteins. Adv. Protein Chem. 1988, 39, 125-89.
36. Boudon, S.; Wipff, G.; Maigret, B., Monte Carlo simulations on the like-charged guanidinium-guanidinium ion pair in water. J. Phys. Chem. 1990, 94, 6056-6061.
37. (a) Duffy, E. M.; Kowalczyk, P. J.; Jorgensen, W. L., Do denaturants interact with aromatic hydrocarbons in water? J. Am. Chem. Soc. 1993, 115, 9271-9275; (b) Nandi, C. L.; Singh, J.; Thornton, J. M., Atomic environments of arginine side chains in proteins. Protein Eng. 1993, 6, 247-59.
38. Chen, C. C.; Hsu, W.; Hwang, K. C.; Hwu, J. R.; Lin, C. C.; Horng, J. C., Contributions of cation-pi interactions to the collagen triple helix stability. Arch. Biochem. Biophys. 2011, 508, 46-53.
39. (a) Crichton, R. R., Biological inorganic chemistry : an introduction. 1st ed.; Elsevier: Amsterdam ; Boston, 2008; p xii, 369 p; (b) Roat-Malone, R. M., Bioinorganic chemistry : a short course. Wiley: Hoboken, N.J., 2002; p xvii, 348 p.
40. Pires, M. M.; Chmielewski, J., Self-assembly of collagen peptides into microflorettes via metal coordination. J. Am. Chem. Soc. 2009, 131, 2706-12.
41. 陳怡倫. 利用金屬誘發膠原蛋白模擬胜肽折疊之探討. 碩士論文, 國立清華大學, 2009.
42. Kar, K.; Ibrar, S.; Nanda, V.; Getz, T. M.; Kunapuli, S. P.; Brodsky, B., Aromatic interactions promote self-association of collagen triple-helical peptides to higher-order structures. Biochemistry 2009, 48, 7959-68.
43. Greenfield, N. J., Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protocols 2007, 1, 2527-2535.
44. Fasman, G. D., Circular dichroism and the conformational analysis of biomolecules. Plenum Press: New York, 1996; p ix, 738 p.
45. Brookhaven Instruction Manual for 90 plus.
46. Harding, S. E.; Jumel, K., Light scattering. Curr. Protoc. Protein Sci. 2001, Chapter 7, Unit 7 8.
47. Chan, W. C.; White, P. D., Fmoc solid phase peptide synthesis : a practical approach. Oxford University Press: New York, 2000; p xxiv, 346 p.
48. Jenkins, C. L.; Vasbinder, M. M.; Miller, S. J.; Raines, R. T., Peptide Bond Isosteres: Ester or (E)-Alkene in the Backbone of the Collagen Triple Helix. Org. Lett. 2005, 7, 2619-2622.
49. (a) Chen, C. C.; Hsu, W.; Kao, T. C.; Horng, J. C., Self-assembly of short collagen-related peptides into fibrils via cation-pi interactions. Biochemistry 2011, 50, 2381-3; (b) 陳佳青. Cation-π作用力對膠原蛋白穩定性及自組裝影響之探討. 碩士, 國立清華大學, 2010.
50. Kar, K.; Amin, P.; Bryan, M. A.; Persikov, A. V.; Mohs, A.; Wang, Y. H.; Brodsky, B., Self-association of collagen triple helic peptides into higher order structures. J. Biol. Chem. 2006, 281, 33283-90.
51. Kar, K.; Wang, Y. H.; Brodsky, B., Sequence dependence of kinetics and morphology of collagen model peptide self-assembly into higher order structures. Protein Sci. 2008, 17, 1086-95.
52. Williams, B. R.; Gelman, R. A.; Poppke, D. C.; Piez, K. A., Collagen fibril formation. Optimal in vitro conditions and preliminary kinetic results. J. Biol. Chem. 1978, 253, 6578-85.
53. Ramshaw, J. A.; Shah, N. K.; Brodsky, B., Gly-X-Y tripeptide frequencies in collagen: a context for host-guest triple-helical peptides. J. Struct. Biol. 1998, 122, 86-91.
54. Yang, W.; Chan, V. C.; Kirkpatrick, A.; Ramshaw, J. A.; Brodsky, B., Gly-Pro-Arg confers stability similar to Gly-Pro-Hyp in the collagen triple-helix of host-guest peptides. J. Biol. Chem. 1997, 272, 28837-40.