簡易檢索 / 詳目顯示

研究生: 王文杰
論文名稱: 以氮化鋁作為介電層之五苯環有機薄膜電晶體—時效性處理與基板溫度效應研究
Pentacene-based Organic Thin Film Transistors with Aluminum Nitride Gate Dielectric - Aging and Substrate Temperature Effect
指導教授: 黃振昌
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 72
中文關鍵詞: 五苯環氮化鋁場效載子遷移率基板溫度
外文關鍵詞: pentacene, AlN, field effect mobility, substrate temperature
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以氮化鋁為介電層之有機薄膜電晶體(OTFT, Organic
    Thin Film Transistor)元件為基礎,研究五苯環(pentacene)有機半導體材料於介電層表面的介面性質,與五苯環沈積時基板的溫度效應
    (substrate thermal effect)。將沈積完的氮化鋁薄膜做時效性處理
    (aging process)可提高元件載子遷移率,時效性處理七天最高可達
    1.806 cm2/Vs的水準;另外發現升高五苯環沈積時基板溫度反而使載
    子遷移率下降,由室溫1.002cm2/Vs、攝氏50度0.178cm2/Vs至攝氏70
    度0.058cm2/Vs,由AFM、GIXD與即時(in-situ)電性量測搭配Raman分
    析,可歸納出五苯環分子堆疊角度與分子間作用力主導載子於五苯
    環分子間傳導的特性,提出不同以往晶粒大小決定載子遷移率高低
    的新觀點。
    元件製作的方面, 本研究以反應式磁控射頻濺鍍系統( R F
    reactive magnetron sputter system)製備氮化鋁介電層,並使用熱蒸鍍系統(thermal evaporation system)沈積五苯環薄膜與金屬電極,整體實驗流程不超過攝氏150度,符合有機薄膜電晶體往可撓曲顯示器發展的需求,並且載子遷移率超越非晶矽薄膜電晶體的水準,開發出以氮化鋁作為介電層之有機薄膜電晶體的潛力。


    In this thesis, aluminum nitride is used as gate dielectric in organic thin film transistor, the main content can be divided into two parts: the aging effect on AlN and the substrate thermal effect during evaporation of pentacene. Taking the as-deposited AlN thin films to undergo the aging process can lead to the rise of the field effect mobility, after 7 days the highest field effect mobility can reach 1.806 cm2/Vs. In addition to the aging effect, the increase of substrate temperature during evaporation of pentacene results in the decrease of field effect mobility. As the
    temperature increases from RT, 50℃ to 70℃, the field effect mobility decreases from 1.002 cm2/Vs, 0.178 cm2/Vs to 0.058 cm2/Vs. AFM and GIXD were used to analyze the material properties of pentacene/AlN. An in-situ Raman analysis was used to analyze the molecular vibration during the operation of OTFT. Different from the previous perspective where the mobility enhancement is mainly caused by enlarging the pentacene grain size, the experimental results suggest that the pentacene molecular stacking and the intermolecular interaction dominate the carrier transport properties.
    The preparation of AlN thin films was applied by RF reactive magnetron sputter system, then by thermal evaporation to deposit pentacene thin films. Throughout the whole process, the temperature is under 150℃. Therefore, it is suitable for the requirement of the flexible display. Moreover, the field effect mobility surpasses the field effect mobility of a-Si TFTs, and it increases the potential of using the OTFTs with AlN dielectric.

    表目錄 ...................................................IX 圖目錄 ........................................................X 第一章 緒論 ........................................................1 1.1 研究動機 ........................................................1 1.2 研究大綱 ........................................................2 第二章 文獻回顧 ........................................................3 2.1 OTFT簡介 ........................................................3 2.2 OTFT操作原理與基本公式 ........................................................4 2.3 OTFT元件結構 ........................................................7 2.4 OTFT元件所使用的材料 ........................................................8 2.4-1 基板材料 ........................................................8 2.4-2 主動層半導體材料 ........................................................8 2.4-3 介電層材料 ........................................................9 2.4-4 汲極與源極金屬 .......................................................10 2.5 氮化鋁材料性質與應用 .......................................................11 2.6 五苯環之材料性質 .......................................................12 2.6-1 五苯環材料結構 .......................................................13 2.6-2 五苯環之結晶態 .......................................................13 2.6-3 五苯環沈積方法 .......................................................14 第三章 實驗步驟與分析 .......................................................22 3.1 實驗流程 .......................................................22 3.2 矽基板清洗 .......................................................22 3.3 介電層沈積 .......................................................23 3.3-1 反應式磁控射頻濺鍍 .......................................................23 3.3-2 沈積氮化鋁薄膜實驗步驟 .......................................................24 3.4 五苯環薄膜與金電極沈積 .......................................................25 3.4-1 熱蒸鍍系統 .......................................................26 3.4-2 沈積五苯環薄膜實驗步驟 .......................................................26 3.4-3 沈積金電極實驗步驟 .......................................................27 3.5 材料分析 .......................................................27 3.5-1 電性分析 .......................................................27 3.5-2 AFM分析 .......................................................28 3.5-3 X-ray分析 .......................................................29 3.5-4 理論計算與分子模擬 .......................................................30 3.5-5 拉曼光譜分析 .......................................................32 第四章 結果與討論 .......................................................40 4.1 介電層之時效性處理 .......................................................40 4.1-1 電性分析 .......................................................41 4.2 五苯環蒸鍍之基板溫度效應 .......................................................41 4.2-1 電性分析 .......................................................42 4.2-2 AFM分析 .......................................................43 4.2-3 GIXD分析 .......................................................45 4.2-4 Raman分析 .......................................................47 4.2-5 結論 .......................................................49 第五章 結論 .......................................................64 參考文獻 .......................................................65

    [1] H.-W. Zan, K.-H.Yen, P.-K. Liu, K.-H. Ku, C.-H. Chen, J. Hwang, Organic Electronics, (2007), 8, 450-454
    [2] J. E. Lilienfeld, US Patent, (1930), 1745 175
    [3] D. Kahng, M. M. Atalla, IRE Solid-State Devices Research
    Conference, Carnegie Institute of Technology, Pittsburgh, PA (1960)
    [4] Facchetti A Mater. Today, (2007), 10, 28–37
    [5] Y. Sun, Y. Liu and D. Zhu, J. Mater. Chem., (2005), 15, 53–65
    [6] Katz H E Chem. Mater., (2004), 16, 4748–4756
    [7] C. Reese, M. Roberts, M.-M. Ling, Z. Bao, materials today, (2004), 7, 20-27
    [8] M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd Edition, Oxford University Press, New York, (1999), 337–340
    [9] Kelley, T. W., et al., Mater. Res. Soc. Symp. Proc. (2003), 169, 771
    [10] Sundar, V. C., et al., Science (2004), 303, 1644
    [11] Y.-Y. Lin, D.-J. G., S.-F. Nelson, T.-N. Jackson, IEEE Electron Device Lett., (1997), 18, 87
    [12] A. Facchetti, M.-H. Yoon, T.-J. Marks, Adv. Mater., (2005), 17, 1705-1725
    [13] S. Lee, B. Koo, J. Shin, E. Lee, H. Park and H. Kim, Appl.Phys. Lett., (2006), 88, 162109
    [14] (a) S. Guha, W. Graupner, R. Resel, M. Chandrasekhar, H.-R. Chandrasekhar, R. Glaser, G.-J. Leising, Phys. Chem. A., (2001), 105, 6203-6211
    (b) Murugan, N. A.; Yashonath, S. J. Phys. Chem. B. 2005, 109, 1433-1440
    (c) F. Balzer, J. Beermann, S.-I. Bozhevolnyi, A.-C Simonsen, H.-G. Rubahn, Nano Lett., (2003), 3, 1311-1314
    [15] (a) M. Halik, H. Klauk, U. Zschieschang, G. Schmid, S.
    Ponomarenko, S. Kirchmeyer, W. Weber, Adv. Mater., (2003), 15, 917-922
    (b) H. Meng, J. Zheng, A.-J. Lovinger, B.-C. Wang, P. G. V. Patten, Z. Bao, Chem. Mater., (2003), 15, 1778-1787
    (c) A.-R. Murphy, J. M. J. Frecht, P. Chang, J. Lee, V.-J. Subramanian, Am. Chem. Soc., (2004), 126, 1596-1597
    [16] H. Meng, F. Sun, M.-B. Goldfinger, F. Gao, D.-J. Londono, W.-J. Marshal, G.-S. Blackman, K.-D. Dobbs, D. E. J. Keys, Am. Chem. Soc. (2006), 128, 9304-9305
    [17] (a) F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, P.-J. Alnot, Am. Chem. Soc., (1993), 115, 8716-8721
    (b) Y. Sun, Y. Ma, Y. Liu, Y. Lin, Z. Wang, Y. Wang, C. Di, K. Xiao, X. Chen, W. Qiu, B. Zhang, G. Yu, W. Hu, D. Zhu, Adv. Funct. Mater., (2006), 16, 426-432
    (c) H. Tian, J. Shi, D. Yan, L. Wang, Y. Geng, F. Wang, Adv. Mater., (2006), 18, 2149-2152
    [18] Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao, Y. Fukai, Y. Inoue, F. Sato, S.-J. Tokito, Am. Chem. Soc., (2004), 126, 8138-8140
    [19] A. Facchetti, M. Mushrush, M.-H. Yoon, G.-R. Hutchison, M.-A. Ratner, T. J. J. Marks, Am. Chem. Soc., (2004), 126, 13859-13874
    [20] M.-H. Yoon, A. Facchetti, C.-E. Stern, T. J. J. Marks, Am. Chem. Soc., (2006), 128, 5792-5801
    [21] M.-H. Yoon, C. Kim, A. Facchetti, T. J. J. Marks, Am. Chem. Soc., (2006), 128, 12851-12869
    [22] (a) H. E. Katz, J. Johnson, A. J. Lovinger, W. J. Li, Am. Chem. Soc., (2000), 122, 7787-7792
    (b) K. Balakrishnan, A. Datar, R. Oitker, H. Chen, J. Zuo, L. J. Zang, Am. Chem. Soc., (2005), 127, 10496-10497
    (c) M. D. Levi, M. A. Vorotyntsev, A. M. Skundin, V. E. Kazarinov, J. Electroanal. Chem., (1991), 319, 1-2, 243-261
    (d) J. G. Laquindanum, H.-E. Katz, A. Dodabalapur, A. J. J. Lovinger, Am. Chem. Soc., (1996), 118, 11331-11332
    (e) S. Ando, R. Murakami, J.-I. Nishida, H. Tada, Y. Inoue, S. Tokito, Y. J. Yamashita, Am. Chem. Soc., (2005), 127, 14996-14997
    [23] C.-D. Dimitrakopoulos, I. Kymissis, S. Purushothaman, D.-A. Neumayer, P.-R. Duncombe, R.-B. Laibowitz, Advanced Materials, (1999), 11, 1372
    [24] M. Kitamura, Y. Arakawa, J. Phys.: Condens. Matter, (2008), 20, 184011-184027
    [25] B. Gil, F.-A. Ponce, “Chapter 4 Structural Defects and Materials Performance of the Ⅲ-Ⅴ Nitrides”, Group Ⅲ Nitride Semiconductor Compounds Physics and Applications, (1998), P.124, P.127, P.197
    [26] E.-A. Chowdhury, J. Kolodzey, J.-O. Olowolafe, G. Qiu, G. Katulka, D. Hits, M. Dashiell, D. van der Weide, C. P. Swann, and K. M. Unruh, Applied Physics Letter, 1997. 70, 2732-2734
    [27] (a) M. Kishi, M. Susuky, K. Ogawa, Jap. J Appl. Phys., (1992), 31, 1153
    (b) J.-H. Edgar, Z.-J. Yu, B.-S. Sywe, Thin Solid Films, (1991), 204, 115
    [28] Yoshida, S. Misawa, S. Fujii, Y. Takada, S. Hayakawa, H. Gonda, S. Itoh, J. Vac. Sci. Technol., 1979, 16, P.990
    [29] K. Seki, X. Xu, H. Okabe, J.-M. Frye, J.-B. Halpern, Appl. Phys. Lett., (1992), 60, 2234
    [30] V. Dimitrova, D. Manova, E. Valcheva, Materials Science and Engineering B, (1999), 68, 1-4
    [31] 古國欣, 五苯環在疏水性氮化鋁上的成長機制研究, 材料科學工程研究所, 2008, 國立清華大學
    [32] 汪建民, “陶瓷技術手冊”, 中華民國科技發展協進會, (1994)
    [33] J.H. Edgar, Journal Material Research, (1992), 7, 235
    [34] 王祖豪, 電感式耦合電漿化學濺鍍法成長氮化鋁薄膜, 材料科學工程研究所, (2000), 國立清華大學
    [35] E.-M. Suuberg, J. Chem. Eng. Data, (1998), 43, 486-492
    [36] W.-H. Mills, M.M., Journal of the Chemical Society, (1912), 101, 2194-2208
    [38] I. Yagi, K. Tsukagoshia, Y. Aoyagi, Thin Solid Films, (2004), 467, 168-171
    [39] Frank-J. Meyer zu Heringdorf, M. C. Reuter & R. M. Tromp, “Growth dynamics of pentacene thin films” IBM T.J. Watson Research Center, Yorktown Heights, PO Box 218, New York 10598, USA
    [40] G.-B. Blanchet, C.-R. Fincher, I. Malajovich, J. Appl. Phys., (2003), 94, 6181-6183
    [41] M. Shtein, J. Mapel, J.-B. Benziger, S.-R. Forrest, Appl. Phys. Lett., (2002), 81, 268-270
    [42] A. Szabo, N.-S. Ostlund, “Modern Quantum Chemistry”, Mcgraw-Hill, New York (1982)
    [43] A.-E. Frisch, J.-B. Foresman, “Exploring Chemistry with Electronic Structure Methods”,2 ed, Gaussian,Pittsburgh, (1996)
    [44] HyperChem, “Computational Chemistry”, Hypercube, Waterloo, ntario, (1996)
    [45] W.-J. Hehre, J.-Yu, P.-E. Klunzinger, L.-A. Lou, “A Brief Guide to Molecular Mechanics and Quantum Chemical Calculations”, Wavefunction, Irvine, (1998)
    [46] W.-J. Hehre, L. Radom, P.-V. R, “ab initio Molecular Orbital Theory’, John Wiley & Sons, New York, (1986)
    [47] A.-E. Frisch, J.-B. Foresman, “Exploring Chemistry with Electronic Structure Methods”,2 ed, Gaussian,Pittsburgh, (1996)
    [48] P. Hohenberg, W. Kohn, Phys. Rev. B, (1964), 136, 864
    [49] W. Kohn, L.-J. Sham, Phys. Rev. A, (1965), 140, 1133
    [50] C.-J. Cramer, “Essentials of Computational Chemistry - Theories and Models “, JohnWiley & Sons, New York, (2002)
    [51] R. McWeeny, G. Dierksen, J. Chem. Phys, (1968), 49, 4852
    [52] I.-N. Levine, “Quantum Chemistry”, 4th ed, Prentice Hall, New York, (1991)
    [53] (a) J. J. P. Stewart, J. Comput. Chem, (1989), 10, 209
    (b) J. J. P. Stewart, J. Comput. Chem,(1989), 10, 221
    (c) J. J. P. Stewart, J. Comput. Chem, (1990), 11, 543
    (d) J. J. P. Stewart, J. Comput. Chem, (1991), 12, 320
    [55] A.-D. Becke, J. Chem. phys, (1993), 98, 5648
    [56] C.-T. Lee, W.-T. Yang, R.-G. Parr, Phys. Rev. A, (1988), 37, 785
    [57] M.-A. Frisch, J.-A. Pople, J.-S. Binkley, J. Chem. Phys, (1984), 80, 3265
    [58] B. Paizs, I.-P. Csonka, G. Lendvay, and S. Suhai, Rapid Commun. Mass Spectrom., (2001), 15, 637
    [59] 劉溥寬, 射頻電漿濺鍍氮化鋁在有機薄膜電晶體閘極絕緣層之應用, 光電工程研究所, (2006), 國立交通大學
    [60] H.-W. Zan, K.-H.Y., P.-K. Liu, K.-H. Ku, C.-H. Chen, J. Hwang, Organic Electronics, (2007), 8, 450-454
    [61] H.-W. Zan, K.-H.Y., P.-K. Liu, K-H. Ku, C.-H. Chen, J. Hwang, JAPANESE JOURNAL OF APPLIED PHYSICS, (2006), 45, L1093–L1096
    [62] H.-W. Zan, C.-W. Chou, C.-H. Wang, H.-T. Song, J. Hwang, P.-T. Lee, Journal of Applied Physics, (2009), 105, 063718
    [63] D.-J. Gundlach, L. Zhou, J.-A. Nichols, T.-N. Jackson, JOURNAL OF APPLIED PHYSICS, (2006), 100, 024509
    [64] A.-D. Carlo, F. Piacenza, A. Bolognesi, B. Stadlober, H. Maresch, Appl. Phys. Lett., (2005), 86, 263501
    [65] C.-D. Dimitrakopoulos, A.-R. Brown, A. Pomp, J. Appl. Phys., (1996), 80, 2501
    [66] H.-L. Cheng, Y.-S. Mai, W.-Y. Chou, L.-R. Chang, X.-W. Liang, Adv. Funct. Mater., (2007), 17, 3639–3649
    [67] I.P.M. Bouchoms, W.-A. Schoonveld, J. Vrijmoeth, T.-M. Klapwijk, Synthetic Metals, (1999), 104, 175–178
    [68] C.-H. Wang, S.-W. Chen, J. Hwang, Applied Physics Letters, (2009), 95, 103302
    [69] H.-L. Cheng, W.-Y. Chou, C.-W. Kuo, Y.-W. Wang, Y.-S. Mai, F.-C. Tang, S.-W. Chu, Adv. Funct. Mater., (2008), 18, 285–293

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE