研究生: |
陳依君 Chen, Yi-Chun |
---|---|
論文名稱: |
三光表面繞射研製Y字型X-ray 波導管之研究 Feasibility study of Y-shape X-ray waveguide using three-beam surface diffraction |
指導教授: |
張石麟
Chang, Shin-Lin |
口試委員: |
蘇雲良
Soo, Yun-Liang 湯茂竹 Tang, Mau-Tsu |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 三光布拉格表面繞射 、動力繞射理論 、Y字型波導管 、遠場繞射 、橫向電場模式 、光流量開關 、光流量控制 |
外文關鍵詞: | X-ray three-beam Bragg-surface diffraction, BSD, Dynamical Theory of X-ray Diffraction, Y-shape X-ray waveguide, Far-Field diffraction, TE-mode, Flux-Switching, Flux-Controlling |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究以X光三光布拉格表面繞射(X-ray three-beam Bragg-surface diffraction, BSD)幾何所產生之表面繞射光,將其繞射光引入Y字型波導管中來探究繞射光的強度變化。Y字型波導管使用之基底材料為矽晶圓,以高吸收係數金屬材料鉭(Ta)為其邊界,波導管在中段以後一分為二,改變波導管的分岔角度(0.1º、0.2º、0.3º、0.4º、0.5º)及線寬(25.6 μm、1.6 μm)。最後由掃描式電子顯微鏡(Scanning Electron Microscope, SEM)來觀測樣品的微結構。
實驗利用同步輻射光源來進行;選擇能量為8.8785 keV的X光作為入射光,以矽(002)原子面為對稱的布拉格反射面及(1-31)原子面為不對稱的表面繞射面,以產生由(1-31)原子面產生的表面繞射光並將此表面繞射光引入設計的波導管[110]方向上。
由實驗結果得知當分岔的兩個波導管之夾角小於Ta金屬與Si晶體邊界全反射之臨界角的兩倍時,則可以觀察到繞射光的分光效果;如此之外,當改變波導管方位角時,則會觀察到繞射光在不同方位上的強度大小有所變化。因此,本研究設計的Y字型波導管所造成的分光效果,可應用在X光學上的光流量開關(Flux-Switching)及光流量控制(Flux-Controlling)。
We report that Y-shaped X-ray waveguides can be designed by utilizing the three-beam Bragg-surface diffraction geometry to generate a surface diffracted beam propagating along the direction of the waveguides. Y-shaped waveguides are prepared on a silicon wafer, choosing tantalum with the high absorbing boundary material. The forked angles of waveguides are 0.1, 0.2, 0.3, 0.4 and 0.5 degrees, respectively. The widths of waveguide are 25.6 and 1.6 micrometers. The structure of a Y-shape waveguide is examined by using the Scanning Electron Microscope (SEM).
Diffraction experiments from this designed waveguide are carried out at the National Synchrotron Radiation Center (NSRRC). The Si (002)/(1-31) three-beam Bragg-surface diffraction is employed to generate the surface (1-31) diffracted beam propagating along the [110] preselected direction of the designed waveguide, where (002) is a symmetric Bragg reflection and (1-31) an asymmetric surface diffraction for the photon energy of 8.8785keV.
It is found that beam splitting occurs in this Y-shaped waveguide when the forked angle between the two branches of the waveguide is smaller than two times of the critical angle of the external total reflection of Ta/Si. Also changing the azimuth angle around the [001] can lead to the adjustment of the diffracted beam intensity. We believe that the Y-shaped waveguide can be applied to the flux-switching and the flux-controlling for X-ray optics.
[1].F. Cajori, “A History of Physics in its Elementary Branches, including the evolution of physical laboratories”, MacMillan Company, New York (1899).
[2].T. Springer, D. Richter, “Strukturelle Charakterisierung und Optimierung der Beugungseigenschaften von Si1-xGex Gradientenkristallen, die aus der Gasphase gezogen wurden”, (1994).
[3].S.-L. Chang, “X-ray multiple-wave diffraction: theory and Applications”, Springer, Berlin (2004).
[4].高至均, X光的特性與材料分析, 工業材料研究所
[5].http://www.ddvip.com/mc/electron/communication/7088.html
[6].Y. P. Feng, S. K. Sinha, H. W. Deckman, J. B. Hastings, and D. P. Siddons, “X-Ray Flux Enhancement in Thin-Film Waveguides Using Resonant Beam Couplers”, Phys. Rev. Lett. 71, 537-540 (1993).
[7].F. Pfeiffer, C. David, M. Burghammer, C. Riekel, T. Salditt, “Two-Dimensional X-ray Waveguides and Point Sources”, Science 297, 230-234 (2002).
[8].M. J. Zwanenburg, J. F. Peters, J. H. H. Bongaerts, S. A. de Vries, D. L. Abernathy, and J. F. van der Veen, “Coherent Propagation of X Rays in a Planar Waveguide with a Tunable Air Gap”, Phys. Rev. Lett. 82, 1696-1699 (1999).
[9].Y.-Z. Zheng, “Investigation of Interfacial Strain Field in SiGe/Si Systems Using Bragg-Surface X-ray Diffraction”, Master's thesis, NTHU (2009).
[10].S.-L. Chang, Lecture note “Special Topics on X-ray Diffraction, Department of Physics”, NTHU.
[11].Yu. P. Stetsko, S.-L. Chang, “An Algorithm for Solving Multiple-Wave Dynamical X-ray Diffraction Equations”, Acta Cryst. A53, 28-34 (1997).
[12].Mau-Sen Chiu, “Dynamical calculation for X-ray 24-beam diffraction in a Fabry-Perot cavity of silicon”, Ph.D thesis, (2008).
[13].J.-D. Jackson, “Classical Electrodynamics(3rd ed.)”, CH 8, Wiley, New York (1998).
[14].L.-S. Cai, “Design and Characterization of X-ray Wide-Angle Incident Splitting Waveguides”, Master's thesis, NTHU (2009).
[15].Y.-H. Tsai, “Feasibility Study of Beam Splitting in Wide-Angle Incident X-Ray Wave Guides”, Master's thesis, NTHU (2008).
[16].E. Hecht, “Optics(3rd ed.)”, Addison Wesley Longman, New York (1998).
[17].F. E. Lytle, “An Introduction to Diffraction PartⅠ:The Near Field”, Applied Spectroscopy, 53, 212-226 (1999).
[18].F. E. Lytle, “An Introduction to Diffraction PartⅡ:The Far Field”, Applied Spectroscopy, 53, 262-276 (1999).
[19].Hong Xiao, “Introduction to Semiconductor Manufacturing Technology”, Prentice Hall, New jersey (2000).