簡易檢索 / 詳目顯示

研究生: 陳依君
Chen, Yi-Chun
論文名稱: 三光表面繞射研製Y字型X-ray 波導管之研究
Feasibility study of Y-shape X-ray waveguide using three-beam surface diffraction
指導教授: 張石麟
Chang, Shin-Lin
口試委員: 蘇雲良
Soo, Yun-Liang
湯茂竹
Tang, Mau-Tsu
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 80
中文關鍵詞: 三光布拉格表面繞射動力繞射理論Y字型波導管遠場繞射橫向電場模式光流量開關光流量控制
外文關鍵詞: X-ray three-beam Bragg-surface diffraction, BSD, Dynamical Theory of X-ray Diffraction, Y-shape X-ray waveguide, Far-Field diffraction, TE-mode, Flux-Switching, Flux-Controlling
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究以X光三光布拉格表面繞射(X-ray three-beam Bragg-surface diffraction, BSD)幾何所產生之表面繞射光,將其繞射光引入Y字型波導管中來探究繞射光的強度變化。Y字型波導管使用之基底材料為矽晶圓,以高吸收係數金屬材料鉭(Ta)為其邊界,波導管在中段以後一分為二,改變波導管的分岔角度(0.1º、0.2º、0.3º、0.4º、0.5º)及線寬(25.6 μm、1.6 μm)。最後由掃描式電子顯微鏡(Scanning Electron Microscope, SEM)來觀測樣品的微結構。
    實驗利用同步輻射光源來進行;選擇能量為8.8785 keV的X光作為入射光,以矽(002)原子面為對稱的布拉格反射面及(1-31)原子面為不對稱的表面繞射面,以產生由(1-31)原子面產生的表面繞射光並將此表面繞射光引入設計的波導管[110]方向上。
    由實驗結果得知當分岔的兩個波導管之夾角小於Ta金屬與Si晶體邊界全反射之臨界角的兩倍時,則可以觀察到繞射光的分光效果;如此之外,當改變波導管方位角時,則會觀察到繞射光在不同方位上的強度大小有所變化。因此,本研究設計的Y字型波導管所造成的分光效果,可應用在X光學上的光流量開關(Flux-Switching)及光流量控制(Flux-Controlling)。


    We report that Y-shaped X-ray waveguides can be designed by utilizing the three-beam Bragg-surface diffraction geometry to generate a surface diffracted beam propagating along the direction of the waveguides. Y-shaped waveguides are prepared on a silicon wafer, choosing tantalum with the high absorbing boundary material. The forked angles of waveguides are 0.1, 0.2, 0.3, 0.4 and 0.5 degrees, respectively. The widths of waveguide are 25.6 and 1.6 micrometers. The structure of a Y-shape waveguide is examined by using the Scanning Electron Microscope (SEM).
    Diffraction experiments from this designed waveguide are carried out at the National Synchrotron Radiation Center (NSRRC). The Si (002)/(1-31) three-beam Bragg-surface diffraction is employed to generate the surface (1-31) diffracted beam propagating along the [110] preselected direction of the designed waveguide, where (002) is a symmetric Bragg reflection and (1-31) an asymmetric surface diffraction for the photon energy of 8.8785keV.
    It is found that beam splitting occurs in this Y-shaped waveguide when the forked angle between the two branches of the waveguide is smaller than two times of the critical angle of the external total reflection of Ta/Si. Also changing the azimuth angle around the [001] can lead to the adjustment of the diffracted beam intensity. We believe that the Y-shaped waveguide can be applied to the flux-switching and the flux-controlling for X-ray optics.

    中文摘要 ...I 英文摘要 ...II 致謝 ...III 目錄 ...IV 圖表目錄 ...VI 第一章 緒論 ...1 第二章 理論介紹 ...3 2.1 三光布拉格表面繞射 ...3 2.2 動力繞射理論 ...7 2.2.1 基本波場方程式 ...7 2.2.2 波場分布 ...11 2.2.3 邊界條件 ...16 2.2.4 選擇條件 ...20 2.3 波導原理 ...23 2.3.1 波場計算 ...23 2.3.2 橫向電場模式及橫向磁場模式 ...25 2.3.3 方形波導管 ...26 2.4 出光口晶體之電場計算 ...31 2.5 遠場繞射強度 ...34 第三章 樣品製備與設計 ...36 3.1 樣品設計 ...36 3.2 樣品製備流程 ...38 3.3 掃描式電子顯微鏡(SEM) ...42 第四章 實驗方法 ...45 4.1 光源及儀器 ...45 4.2 實驗步驟 ...46 第五章 理論計算與模擬 ...53 5.1 繞射光強度模擬 ...53 5.1.1 一階繞射光強度 ...53 5.1.2 表面繞射光強度 ...54 5.2 波導管激發模式 ...55 5.3 光線路徑模擬 ...59 第六章 實驗結果與討論 ...63 6.1 Y字型波導管平移強度 ...63 6.2 波導管的強度變化 ...64 6.2.1 Y字型波導管之繞射強度圖形 ...64 6.2.2 直線型波導管與Y字型波導管之繞射強度 ...68 6.2.3 Y字型波導管不同分岔角度之繞射強度 ...69 6.2.3 Y字型波導管不同方位角之繞射強度 ...75 第七章 總結與未來展望 ...78 參考文獻 ...79

    [1].F. Cajori, “A History of Physics in its Elementary Branches, including the evolution of physical laboratories”, MacMillan Company, New York (1899).
    [2].T. Springer, D. Richter, “Strukturelle Charakterisierung und Optimierung der Beugungseigenschaften von Si1-xGex Gradientenkristallen, die aus der Gasphase gezogen wurden”, (1994).
    [3].S.-L. Chang, “X-ray multiple-wave diffraction: theory and Applications”, Springer, Berlin (2004).
    [4].高至均, X光的特性與材料分析, 工業材料研究所
    [5].http://www.ddvip.com/mc/electron/communication/7088.html
    [6].Y. P. Feng, S. K. Sinha, H. W. Deckman, J. B. Hastings, and D. P. Siddons, “X-Ray Flux Enhancement in Thin-Film Waveguides Using Resonant Beam Couplers”, Phys. Rev. Lett. 71, 537-540 (1993).
    [7].F. Pfeiffer, C. David, M. Burghammer, C. Riekel, T. Salditt, “Two-Dimensional X-ray Waveguides and Point Sources”, Science 297, 230-234 (2002).
    [8].M. J. Zwanenburg, J. F. Peters, J. H. H. Bongaerts, S. A. de Vries, D. L. Abernathy, and J. F. van der Veen, “Coherent Propagation of X Rays in a Planar Waveguide with a Tunable Air Gap”, Phys. Rev. Lett. 82, 1696-1699 (1999).
    [9].Y.-Z. Zheng, “Investigation of Interfacial Strain Field in SiGe/Si Systems Using Bragg-Surface X-ray Diffraction”, Master's thesis, NTHU (2009).
    [10].S.-L. Chang, Lecture note “Special Topics on X-ray Diffraction, Department of Physics”, NTHU.
    [11].Yu. P. Stetsko, S.-L. Chang, “An Algorithm for Solving Multiple-Wave Dynamical X-ray Diffraction Equations”, Acta Cryst. A53, 28-34 (1997).
    [12].Mau-Sen Chiu, “Dynamical calculation for X-ray 24-beam diffraction in a Fabry-Perot cavity of silicon”, Ph.D thesis, (2008).
    [13].J.-D. Jackson, “Classical Electrodynamics(3rd ed.)”, CH 8, Wiley, New York (1998).
    [14].L.-S. Cai, “Design and Characterization of X-ray Wide-Angle Incident Splitting Waveguides”, Master's thesis, NTHU (2009).
    [15].Y.-H. Tsai, “Feasibility Study of Beam Splitting in Wide-Angle Incident X-Ray Wave Guides”, Master's thesis, NTHU (2008).
    [16].E. Hecht, “Optics(3rd ed.)”, Addison Wesley Longman, New York (1998).
    [17].F. E. Lytle, “An Introduction to Diffraction PartⅠ:The Near Field”, Applied Spectroscopy, 53, 212-226 (1999).
    [18].F. E. Lytle, “An Introduction to Diffraction PartⅡ:The Far Field”, Applied Spectroscopy, 53, 262-276 (1999).
    [19].Hong Xiao, “Introduction to Semiconductor Manufacturing Technology”, Prentice Hall, New jersey (2000).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE