簡易檢索 / 詳目顯示

研究生: 朱婉禎
Chu, Wen-Chen
論文名稱: 利用磁性粒子與光敏性水膠建構特殊細胞排列的組織
A simple cell patterning method using magnetic particle-containing photosensitive polyethylene glycol hydrogels
指導教授: 張晃猷
Chang, Hwan-You
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 30
中文關鍵詞: 細胞排列磁性粒子水膠
外文關鍵詞: cell patterning, magnetic particle, hydrogel
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞排列技術是建構與活體相似、高複雜度組織和器官的重要基礎。雖然細胞排列的技術發展至今已經有一段時間,但是大多數排列細胞的方法都很複雜,有的還需要一些特殊儀器輔助。本研究利用磁力和光敏性水膠發展出一種簡單且有效率的細胞排列方法。首先,我們將聚乙二醇混合磁性微顆粒,再用光微影技術做出有特殊圖案的水膠磁塊。由於我們的曝光系統解析度大約150微毫米左右,因此無法做出太細微的圖案。此外,為了證實水膠磁塊能夠被磁力所控制,我們利用磁性探針去操控水膠磁塊,結果發現探針不必接觸磁塊,即可將它移動到任何特定的位置。接著,我們把水膠磁塊放入細胞培養盤中,並以磁鐵吸附定位。再把細胞放入培養盤內,細胞會貼附在未被水膠磁塊覆蓋的地方。待細胞貼附之後,我們再利用磁力將水膠磁塊移除。如此,就可以做出特殊的細胞圖案。如果放入第二種細胞到培養盤內,此些細胞會貼附於尚未佔據的空間,而產生由兩種不同細胞所組成的圖案。另外,我們也發現這種方法對細胞的毒性很低,幾乎不會影響到細胞生長,也不需修飾細胞,因此解決了別種細胞排列法常發生的限制。綜合以上實驗結果,我們認為這種細胞排列方法對於研究細胞生物學和組織工程而言是一項相當有用的技術。


    Cell patterning techniques are the basis to construct in vivo-like complex tissues and organs. Although many cell patterning methods have been developed so far, most of them are either sophisticated or depend on special devices. Here, we present a simple and efficient cell patterning method which is based on magnetic force and photosensitive poly (ethylene glycol) diacrylate (PEG-DA) hydrogels. The PEG-DA hydrogel was made magnetic by mixing with magnetic microparticles and fabricated into specific patterns by photolithography. The resolution of this approach in microstructure fabrication was shown to be about 150 μm. In addition, the patterned PEG hydrogels can be manipulated by using magnetic force and transported to desired locations without direct contact with the magnetic probe. To create cell patterns, the magnetic PEG-DA blocks were placed into a cell culture dish and hold at a designated position with a magnet. Cells were then seeded on the areas not covered by the hydrogel and allowed to attach. After the cells were adhered tightly to the dish surface, the hydrogel was removed, again by magnetic manipulation. The second types of cells were then loaded into the culture dish to grow on the unoccupied areas to form heterotypic cell patterns. Using this method, many complex cell patterns can be generated with good resolutions. This method produces negligible effects on cell viability, thus eliminating potential cell harmful effects associated with other cell manipulation methods. Together, these findings indicate that this simple cell patterning method will be a useful tool in cell biology and tissue engineering.

    Abstract i 摘要 ii Abbreviations iii Acknowledgments v Table of contents vi Table of figures vii Introduction 1 Materials and methods 5 Results 9 Discussions 12 Appendix 24 References 25

    1. Khademhosseini, A. and R. Langer, Microengineered hydrogels for tissue engineering. Biomaterials, 2007. 28(34): p. 5087-92.
    2. Khademhosseini, A., et al., Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A, 2006. 103(8): p. 2480-7.
    3. Moroni, L., J.R. de Wijn, and C.A. van Blitterswijk, Integrating novel technologies to fabricate smart scaffolds. J Biomater Sci Polym Ed, 2008. 19(5): p. 543-72.
    4. Badylak, S.F., D.O. Freytes, and T.W. Gilbert, Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater, 2009. 5(1): p. 1-13.
    5. Lee, K.Y. and D.J. Mooney, Hydrogels for tissue engineering. Chem Rev, 2001. 101(7): p. 1869-79.
    6. Thanos, C.G. and D.F. Emerich, On the use of hydrogels in cell encapsulation and tissue engineering system. Recent Pat Drug Deliv Formul, 2008. 2(1): p. 19-24.
    7. Garagorri, N., et al., Keratocyte behavior in three-dimensional photopolymerizable poly(ethylene glycol) hydrogels. Acta Biomater, 2008. 4(5): p. 1139-47.
    8. Jen, A.C., M.C. Wake, and A.G. Mikos, Review: Hydrogels for cell immobilization. Biotechnol Bioeng, 1996. 50(4): p. 357-64.
    9. Mano, J.F., et al., Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface, 2007. 4(17): p. 999-1030.
    10. Corkhill, P.H., C.J. Hamilton, and B.J. Tighe, Synthetic hydrogels. VI. Hydrogel composites as wound dressings and implant materials. Biomaterials, 1989. 10(1): p. 3-10.
    11. Tessmar, J.K. and A.M. Gopferich, Customized PEG-derived copolymers for tissue-engineering applications. Macromol Biosci, 2007. 7(1): p. 23-39.
    12. Revzin, A., et al., Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. Langmuir, 2001. 17(18): p. 5440-7.
    13. Suh, K.Y., et al., A simple soft lithographic route to fabrication of poly(ethylene glycol) microstructures for protein and cell patterning. Biomaterials, 2004. 25(3): p. 557-63.
    14. Nguyen, K.T. and J.L. West, Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 2002. 23(22): p. 4307-14.
    15. Kuncova-Kallio, J. and P.J. Kallio, PDMS and its suitability for analytical microfluidic devices. Conf Proc IEEE Eng Med Biol Soc, 2006. 1: p. 2486-9.
    16. Dendukuri, D., et al., Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater, 2006. 5(5): p. 365-9.
    17. Jang, J.H., et al., A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography. Angew Chem Int Ed Engl, 2007. 46(47): p. 9027-31.
    18. Hwang, D.K., D. Dendukuri, and P.S. Doyle, Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles. Lab Chip, 2008. 8(10): p. 1640-7.
    19. Falconnet, D., et al., Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials, 2006. 27(16): p. 3044-63.
    20. Nahmias, Y., et al., Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol Bioeng, 2005. 92(2): p. 129-36.
    21. Kane, R.S., et al., Patterning proteins and cells using soft lithography. Biomaterials, 1999. 20(23-24): p. 2363-76.
    22. Nahmias, Y., et al., Cell patterning on biological gels via cell spraying through a mask. Tissue Eng, 2005. 11(5-6): p. 701-8.
    23. Nakanishi, J., et al., Recent advances in cell micropatterning techniques for bioanalytical and biomedical sciences. Anal Sci, 2008. 24(1): p. 67-72.
    24. Kikuchi, K., et al., Stepwise assembly of micropatterned co-cultures using photoresponsive culture surfaces and its application to hepatic tissue arrays. Biotechnol Bioeng, 2009. 103(3): p. 552-61.
    25. Kemshead, J.T. and J. Ugelstad, Magnetic separation techniques: their application to medicine. Mol Cell Biochem, 1985. 67(1): p. 11-8.
    26. Gijs, M.A., Magnetic particle handling microsystems for miniaturized analytical applications. Conf Proc IEEE Eng Med Biol Soc, 2007. 2007: p. 4088-9.
    27. Alexiou, C., et al., Medical applications of magnetic nanoparticles. J Nanosci Nanotechnol, 2006. 6(9-10): p. 2762-8.
    28. Ohashi, T., et al., A simple device using magnetic transportation for droplet-based PCR. Biomed Microdevices, 2007. 9(5): p. 695-702.
    29. Pregibon, D.C., M. Toner, and P.S. Doyle, Magnetically and biologically active bead-patterned hydrogels. Langmuir, 2006. 22(11): p. 5122-8.
    30. Meenach, S.A., et al., Biocompatibility analysis of magnetic hydrogel nanocomposites based on poly(N-isopropylacrylamide) and iron oxide. J Biomed Mater Res A, 2008.
    31. Satarkar, N.S. and J. Zach Hilt, Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomater, 2008. 4(1): p. 11-6.
    32. Pamme, N., Magnetism and microfluidics. Lab Chip, 2006. 6(1): p. 24-38.
    33. Ito, A., et al., Construction and harvest of multilayered keratinocyte sheets using magnetite nanoparticles and magnetic force. Tissue Eng, 2004. 10(5-6): p. 873-80.
    34. Ino, K., A. Ito, and H. Honda, Cell patterning using magnetite nanoparticles and magnetic force. Biotechnol Bioeng, 2007. 97(5): p. 1309-17.
    35. Akiyama, H., et al., Fabrication of complex three-dimensional tissue architectures using a magnetic force-based cell patterning technique. Biomed Microdevices, 2009.
    36. Byth, H.A., et al., Assessment of a simple, non-toxic Alamar blue cell survival assay to monitor tomato cell viability. Phytochem Anal, 2001. 12(5): p. 340-6.
    37. Lin, R.Z., et al., Magnetic reconstruction of three-dimensional tissues from multicellular spheroids. Tissue Eng Part C Methods, 2008. 14(3): p. 197-205.
    38. Teodor, E., et al., Hydrogel-magnetic nanoparticles with immobilized L: -asparaginase for biomedical applications. J Mater Sci Mater Med, 2009. 20(6): p. 1307-14.
    39. Akiyama, H., et al., Cell-patterning using poly (ethylene glycol)-modified magnetite nanoparticles. J Biomed Mater Res A, 2009.
    40. Ma, X. and G.R. Arce, PSM design for inverse lithography with partially coherent illumination. Opt Express, 2008. 16(24): p. 20126-41.
    41. Lin, R.Z., et al., Dielectrophoresis based-cell patterning for tissue engineering. Biotechnol J, 2006. 1(9): p. 949-57.
    42. Liu Tsang, V., et al., Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J, 2007. 21(3): p. 790-801.
    43. Yang, J., et al., Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials, 2005. 26(33): p. 6415-22.
    44. Mironov, V., et al., Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol, 2003. 21(4): p. 157-61

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE