簡易檢索 / 詳目顯示

研究生: 黃啟訓
Hwang, Chi-Shin
論文名稱: 肌萎縮側索硬化症生物標記與腦源性神經保護因子應用於治療神經退化性疾病之分子機轉
Biomarkers of Amyotrophic Lateral Sclerosis and Molecular Mechanisms of Brain Derived Neurotrophic Factor in theTherapy of Neurodegenerative Diseases
指導教授: 張大慈
Chang, Dah-Tsyr
口試委員: 張大慈
Chang, Dah-Tsyr
邱文祥
Chiu, Wen-Hsiang
劉振軒
Liu, Chen-Hsuan
白敦文
Pai, Tun-Wen
張顥騰
Chang, Hao-Teng
林淑娟
Lin, Shu-Chuan
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 108
中文關鍵詞: 肌萎縮側索硬化症生物標記高活動性群族蛋白-1型熱休克蛋白嗜伊紅白血球神經毒素腦源性神經保護因子神經保護作用
外文關鍵詞: Amyotrophic lateral sclerosis (ALS), Biomarkers, High mobility group box 1 (HMGB1), Heat shock protein (HSP), Eosinophil derived neurotoxin (EDN), Brain-derived neurotrophic factor (BDNF), Neuroprotection
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    肌萎縮側索硬化症是一種可怕且複雜的進行性神經退化疾病,屬於世界衛生組織公告包括癌症及愛滋病在內之二十一世紀五大重要且困難治療的疾病之ㄧ,本研究顯示此疾病在台灣的發生率約為十萬分之0.51、盛行率約為十萬分之 1.97 。到目前為止其致病原因尚不清楚,且臨床診斷的難度相當高;以往各國的研究顯示平均誤診率高達10%、確診延遲時間約13到18個月。因此尋找新穎的肌萎縮側索硬化症分子生物標記以幫助提高臨床診斷的正確率至為重要。
    肌萎縮側索硬化症的致病機轉包括:神經性發炎反應、谷氨酸興奮性中毒、細胞結構性蛋白病變、神經軸性物質傳導障礙、氧化壓力等因素;據信其中氧化壓力扮演極重要的角色。此外,目前已發現Damage Associated Molecular Patterns (DAMP)可以做為許多神經退化性疾病的診斷性生物標記;本研究發現熱休克蛋白HSP60及HSC70反應域專一性單株抗體能準確地測出肌萎縮側索硬化症病患血清中的熱休克蛋白分子濃度,並能與健康對照組明顯地鑑別診斷,證實特殊的熱休克蛋白反應域專一性單株抗體確實可應用於肌萎縮側索硬化症的分子診斷。
    進一步研究發現肌萎縮側索硬化症患者血清中High Motility Group Box 1 (HMGB1)自體抗體(autoantibody)濃度較阿茲海默症患者、巴金森氏症患者、及正常人明顯高出許多;同時肌萎縮側索硬化症患者血清中HMGB1自體抗體濃度的上昇程度也與其病情進展成正相關。本研究率先報導血清中HMGB1自體抗體可應用於肌萎縮側索硬化症的早期診斷與病情追蹤,未來此新穎分子生物標記可應用於臨床試驗中的療效評估,同時幫助臨床醫師更進一步了解肌萎縮側索硬化症的真正致病機轉。
    研究神經保護作用的分子機轉對於肌萎縮側索硬化症乃至於其他神經退化性疾病治療策略的研發都具有關鍵性的角色,目前已知神經保護因子缺乏為肌萎縮側索硬化症、亨廷頓氏症、及其他神經退化性疾病的重要致病因素;同時已發現腦源性神經保護因子brain-derived neurotrophic factor (BDNF)可延緩各種神經退化性疾病造成的神經細胞死亡。
    3-Nitropropionic acid (3-NP)是一種不可逆的粒線體Succinate dehydrogenase呼吸酶抑制劑,已廣泛應用於研究神經退化性疾病中粒線體功能異常導致細胞死亡的分子機轉。本研究培養老鼠胚胎腦細胞並使用3-NP及BDNF進行各種試驗,根據實驗結果我們提出一個BDNF神經保護作用之可能分子機轉路徑:BDNF → NO →PKG → Thioredoxin → Bcl-2→神經保護作用。然而本研究亦發現活化此BDNF分子機轉路徑尚不足以達到完全的神經保護作用,其原因可能是此分子機轉路徑只是BDNF神經保護作用複雜級聯路徑(cascade)中的一條。
    我們曾經報導過老鼠胚胎腦細胞經由BDNF處理後可誘導產生sonic hedgehog (SHH)以達到其神經保護作用;進一步研究更發現BDNF 誘發產生SHH必須經由活化 erythropoietin (EPO)作用。據此,本研究提出BDNF神經保護作用分子級聯機轉的另一條可能路徑如下:BDNF → EPO → SHH →神經保護作用。綜合以上我們的發現為肌萎縮側索硬化症、亨廷頓氏症、及其他神經退化性疾病的治療研發提供了一個嶄新的發展方向。


    Abstract

    Amyotrophic lateral sclerosis (ALS) is a complicate and progressive onset devastating neurodegenerative disease. According to the announcement of World Health Organization, it is one of the five most important incurable human diseases of this era, along with cancer and AIDS. Our study showed that average incidence and prevalence of ALS in Taiwan was 0.51 and 1.97 per 105, respectively. Till now, the etiology of ALS remains largely unclear and its diagnosis is difficult; on average 10% misdiagnosis rate for ALS is reported. In addition, the averaged delay period between symptom onset to confirmation of ALS diagnosis may be up to 13 to 18 months. Hence searching for novel molecular biomarkers to improve the clinical diagnostic ability for ALS is essentially important.
    Neuroinflammation, glutamate excitotoxicity, altered cytoskeletal proteins, impaired axoplasmic transport, and oxidative stress are involved in the pathogenesis of ALS. Among which oxidative stress plays an important role. Damaged associated molecular patterns (DAMPs) represent potential diagnostic biomarkers for a number of neurodegenerative diseases. In our studies, we found that domain specific monoclonal antibodies against heat shock proteins (HSP60 and HSC70) could successfully detect serum HSPs level in ALS patients and prove the difference between healthy adults and ALS patients. These monoclonal antibodies could be useful molecular biomarkers for the diagnosis of ALS.
    Interestingly, serum levels of autoantibody (autoAb) against high mobility group box 1 (HMGB1) in ALS patients were significantly higher as compared with those in patients with Alzheimer’s disease (AD), Parkinson’s disease (PD), and healthy control subjects. Meanwhile, serum levels of HMGB1 autoAb were correlated with ALS disease progression, indicating that HMGB1 autoAb served as an effective molecular biomarker for diagnosis and clinical evaluation of ALS. This biomarker could be used to diagnose early stages of ALS, monitor disease progression, and potentially evaluate therapeutic efficacy during clinical trials. Therefore, identification of these molecular biomarkers could eventually assist understanding of the disease by providing insights into the pathogenesis of ALS.
    Investigation of neuroprotective mechanism is important in development of therapeutic strategies for ALS and other neurodegenerative diseases. Deficiency of neurotrophic factors and mitochondrial dysfunction has been implicated in the pathogenesis of ALS, Huntington's disease (HD) and many neurodegenerative diseases. Meanwhile, brain-derived neurotrophic factor (BDNF) is known to rescue neuronal death.
    3-Nitropropionic acid (3-NP) is an irreversible inhibitor of mitochondrial succinate dehydrogenase for exploring molecular mechanisms of cell death associated with mitochondrial dysfunction in neurodegenerative diseases. Here primary culture of fetal rat cortical neurons with different treatments of 3-NP and BDNF was studied. We proposed a hypothetical signal transduction pathway potentially inducible by BDNF preconditioning, denoted as: “BDNF → NO →PKG → Thioredoxin → Bcl-2 → protect neurodegeneration”. However, we also found that full protection could not be achieved with these pathway activators, indicating that this proposed pathway is only part of the signaling cascade inducible by BDNF preconditioning.
    On the other hand, our other previous studies have also found that preconditioning of neuronal culture with BDNF induced sonic hedgehog (SHH), meanwhile BDNF-dependent SHH expression and 3-NP resistance required prior induction of EPO. Based on these findings, we proposed another hypothetical signal transduction pathway of BDNF signaling cascade, denoted as: "BDNF → EPO → SHH → protect neurodegeneration". In conclusion, all the above findings may illustrate a clue to develop new therapeutic strategy for ALS, HD, and many other neurodegenerative diseases.

    Table of Contents Author’s publication list related to this dissertation -- i Abstract (Chinese) ------------------------------------- iii Abstract (English) --------------------------------------- v Keywords ----------------------------------------------- vii Abbreviations list ------------------------------------ viii Acknowledgements------------------------------------------ x Chapter 1: General preface ------------------------------ 1 Chapter 2: General survey of ALS cases in Taiwan -------- 8 Chapter 3: Heat shock proteins (HSP60, HSC70, HSP70, HSP90α and HSP90β) as molecular biomarkers for ALS ------ 24 Chapter 4: Autoantibodies against HSPs & high motility group box 1(HMGB1) as molecular biomarkers for diagnosis ALS ----------------------------------------------------- 50 Chapter 5: Elevated level of eosinophil-derived neurotoxin (EDN) in patients with ALS ----------------------------- 72 Chapter 6: Molecular mechanisms of brain-derived neurotrophic factor (BDNF) therapeutic effects for ALS and other neurodegenerative diseases ------------------------ 90

    References of Chapter 1

    1.Mitchell JD, Borasio GD. Amyotrophic lateral sclerosis. Lancet 2007;369:2031-41.
    2.Haverkamp LJ, Appel V, Appel SH. Natural history of amyotrophic lateral sclerosis in a database population. Validation of a scoring system and a model for survival prediction. Brain1995;118:707-19.
    3.Worms PM. The epidemiology of motor neuron diseases: a review of recent studies. J Neurol Sci 2001;191:3-9
    4.Lee C TC, Wang KC, Hwang CS, Tsai CP. Incidence, prevalence and medical expenditures of amyotrophic lateral sclerosis in Taiwan,1999-2008.J Formos Med Assoc 2013;1:1-8.
    5.Fong GC, Cheng TS, Lam K, Cheng WK, Mok KY, Cheung CM, Chim CS, Mak W, Chan KH, Tsang KL et al: An epidemiological study of motor neuron disease in Hong Kong. Amyotroph Lateral Scler Other Motor Neuron Disord 2005;6:164-8.
    6.Okamoto K, Kobashi G, Washio M, Sasaki S, Yokoyama T, Miyake Y, Sakamoto N, Tanaka H, Inaba Y. Descriptive epidemiology of amyotrophic lateral sclerosis in Japan, 1995-2001. J Epidemiol 2005;15:20-3.
    7.Fang F, Valdimarsdottir U, Bellocco R, Ronnevi LO, Sparen P, Fall K, Ye W. Amyotrophic lateral sclerosis in Sweden, 1991-2005. Arch Neurol 2009;66:515-9.
    8.Kunst CB. Complex genetics of amyotrophic lateral sclerosis. Am J Hum Genet. 2004;75:933-47.
    9.Miller RG, Mitchell JD, Lyon M, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev (2007): CD001447 doi:10.1002/14651858.CD001447.
    10.Traynor BJ, Alexander M, Corr B, Frost E, Hardiman O. Effect of a multidisciplinary amyotrophic lateral sclerosis (ALS) clinic on ALS survival: a population based study, 1996-2000. J Neurol Neurosurg Psychiatry 2003;74:1258-61
    11.Miller RG, Jackson CE, Kasarskis EJ, England JD, Forshew D,Johnston W, Kalra S, Katz JS, Mitsumoto H, Rosenfeld J, Shoesmith C, Strong MJ, Woolley SC Practice parameter update: The care of the patient with amyotrophic lateral sclerosis: drug, nutritional, and respiratory therapies (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2009;73:1218-26.
    12.Andersen PM, Borasio GD, Dengler R, Hardiman O, Kollewe K, Leigh PN, Pradat PF, Silani V, Tomik B. EFNS task force on management of amyotrophic lateral sclerosis: guidelines for diagnosing and clinical care of patients and relatives. Eur J Neurol 2005;12:921-38.
    14.Hayashi H, Kato S. Total manifestations of amyotrophic lateral sclerosis. ALS in the totally locked-in state. J Neurol Sci 1989;93:19-35.
    15.Dettmers C, Fatepour D, Faust H, Jerusalem F. Sympathetic skin response abnormalities in amyotrophic lateral sclerosis. Muscle Nerve 1993;16:930-34.
    16.Oey PL, Vos PE, Wieneke GH, Wokke JH, Blankestijn PJ, Karemaker JM. Subtle involvement of the sympathetic nervous system in amyotrophic lateral sclerosis. Muscle Nerve 2002;25:402-8.
    17.Brooks BR, Miller RG, Swash M, Munsat TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000;1:293-9.
    18.Davenport RJ, Swingler RJ, Chancellor AM, Warlow CP. Avoiding false positive diagnoses of motor neuron disease: lessons from the Scottish Motor Neuron Disease Register. J Neurol Neurosurg Psychiatry 1996;60:147-51.
    19.Traynor BJ, Codd MB, CorrB, Forde C, Frost E, Hardiman O. Amyotrophic lateral sclerosis mimic syndromes: a population-based study. Arch Neurol 2000;57:109-13.
    20.Chio A, Cucatto A, Calvo A, Terreni AA, Magnani C, Schiffer D. Amyotrophic lateral sclerosis among the migrant population to Piemonte, northwestern Italy. J Neurol 1999;246:175-80
    21.Henkel JS, Engelhardt JI, Siklos L, Simpson EP, Kim SH, Pan T, Goodman JC, Siddique T, Beers DR, Appel SH. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 2004; 55:221-35.
    22.Ranganathan S, Williams E, Ganchev P, Gopalakrishnan V, Lacomis D, Urbinelli L, Newhall K, Cudkowicz ME, Brown RH Jr, Bowser R. Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J Neurochem 2005; 95:1461-71.
    23.Cronin S, Greenway MJ, Ennis S, Kieran D, Green A, Prehn JH, Hardiman O. Elevated serum angiogenin levels in ALS. Neurology 2006; 67:1833-6.
    24.Tanaka M, Kikuchi H, Ishizu T, Minohara M, Osoegawa M, Motomura K, Tateishi T, Ohyagi Y, Kira J. Intrathecal upregulation of granulocyte colony stimulating factor and its neuroprotective actions on motor neurons in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2006;65:816-25.
    25.Mitsumoto H, Ulug AM, Pullman SL, Gooch CL, Chan S, Tang MX, Mao X, Hays AP, Floyd AG, Battista V. Quantitative objective markers for upper and lower motor neuron dysfunction in ALS. Neurology 2007; 68:1402-10.
    26.Nagata T, Nagano I, Shiote M, Narai H, Murakami T, Hayashi T, Shoji M, Abe K. Elevation of MCP-1 and MCP-1/VEGF ratio in cerebrospinal fluid of amyotrophic lateral sclerosis patients. Neurol Res 2007; 29:772-6.
    27.Ranganathan S, Nicholl GC, Henry S, Lutka F, Sathanoori R,Lacomis D, Bowser R. Comparative proteomic profiling of cerebrospinal fluid between living and post mortem ALS and control subjects. Amyotroph Lateral Scler 2007;8:373-9.
    28.Ryberg H, Bowser R. Protein biomarkers for amyotrophic lateral sclerosis. Expert Rev Proteomics 2008;5:249-62.
    29.Ludolph AC. Motor neuron disease: urgently needed-biomarkers for amyotrophic lateral sclerosis. Nat Rev Neurol 2011;7:13-4.
    30.Mitchell RM, Freeman WM, Randazzo WT, Stephens HE, Beard JL, Simmons Z, Connor JR. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology 2009;72:14-9.
    31.De Maio. An extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: A form of communication during injury, infection, and cell damage: It is never known how far a controversial finding will go! Cell Stress Chaperones 2010; 75:178-94
    32.Alabrese V, Lodi R, Tonon C, D'Agata V, Sapienza M. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia. J Neurol Sci 2005; 233:145-162.
    33.Veereshwarayya V, Kumar P, Rosen KM, Mestril R, Querfurth HW. Differential effects of mitochondrial heat shock protein 60 and related molecular chaperones to prevent intracellular beta-amyloid-induced inhibition of complex IV and limit apoptosis.J Biol Chem 2006;281:29468-78.
    34.Kalmar B, Greensmith L. Activation of the heat shock response in a primary cellular model of motoneuron neurodegeneration-evidence for neuroprotective and neurotoxic effects. Cell Mol Biol Lett 2009;14: 319-35.


    Reference of Chapter 2

    1.Lai CH, Tseng HF. Epidemiology and medical expenses of motor neuron diseases in Taiwan. Neuroepidemiol 2008;31:159-66.
    2.Fong GC, Cheng TS, Lam K, Cheng WK, Mok KY, Cheung CM. An epidemiological study of motor neuron disease in Hong Kong. Amyotroph Lateral Scler Other Motor Neuron Disord 2005; 6:164-8.
    3.Okamoto K, Kobashi G, Washio M, Sasaki S, Yokoyama T, Miyake Y. Descriptive epidemiology of amyotrophic lateral sclerosis in Japan, 1995-2001. J Epidemiol 2005;15: 20-3.
    4.Fang F, Valdimarsdottir U, Bellocco R, Ronnevi LO, Sparen P, Fall K. Amyotrophic lateral sclerosis in Sweden, 1991-2005. Arch Neurol 2009; 66:515-9.
    5.Govoni V, Cesnik E, Casetta I, Tugnoli V, Tola MR, Granieri E. Temporal trend of amyotrophic lateral sclerosis incidence in southern Europe: a population study in the health district of Ferrara, Italy. J Neurol 2012;259:1623-31.
    6.Martinez HR, Molina-Lopez JF, Cantu-Martinez L, Gonzalez-Garza MT, Moreno-Cuevas JE, Couret-Alcaraz P, Trevino SA, Webb-Vargas Y, Caro E, Gil-Valadez A. Survival and clinical features in Hispanic amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler 2011;12:199-205.
    7.Nalini A, Thennarasu K, Gourie-Devi M, Shenoy S, Kulshreshtha D. Clinical characteristics and survival pattern of 1,153 patients with amyotrophic lateral sclerosis: experience over 30 years from India. J Neurol Sci 2008;272:60-70.
    8.Kihira T, Yoshida S, Okamoto K, Kazimoto Y, Ookawa M, Hama K, Miwa H, Kondo T. Survival rate of patients with amyotrophic lateral sclerosis in Wakayama Prefecture, Japan, 1966 to 2005. J Neurol Sci 2008; 268:95-101.
    9.Hartinez HR, Molina LJF, Cantu ML, Gonzalez GMT, Moreno CJE, Couret AP, Trevino SA, Webb VY, Caro E, Gil V. Survival and clinical features in Hispanic amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler 2011;12:199-205.
    10.Zoccolella S, Beghi E, Palagano G, Fraddosio A, Guerra V, Samarelli V, Lepore V, Simone IL, Lamberti P, Serlenga L. Analysis of survival and prognostic factors in amyotrophic lateral sclerosis: a population based study. J Neurol Neurosurg Psychiatry 2008;79:33-7.

    References of Chapter 3

    1.Elrick MM, Walgren JL, Mitchell MD. Proteomics: recent applications and new technologies. Basic Clin Pharmacol Toxicol 2006;98: 432-41.
    2.Ward JM, Benveniste RE, Fox CH, Battles JK, Gonda MA, Tully JG. Autoimmunity in chronic active Helicobacter hepatitis of mice. Serum antibodies and expression of heat shock protein 70 in liver. Am J Pathol 1996;148:509-517.
    3.Batulan Z, Shinder GA, Minotti S, He BP, Doroudchi MM, Nalbantoglu J, Strong MJ, Durham HD. High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J Neurosci 2003; 23: 5789-98.
    4.Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, Dillmann WH, Zoghbi HY. Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 2001;10:1511-8.
    5.Flanagan SW, Ryan AJ, Von GC, Moseley PL. Tissue-specific HSP70 response in animals undergoing heat stress. Am J Physiol 1995;268:R28-R32.
    6.Ellis RJ, van der Vies SM. Molecular chaperons. Annu. Rev. Genet. 1991;60: 321-47.
    7.Hutter JJ, Mestril R, Tam EKE, Sievers RE, Dillmann WH, Wolfe CL. Overexpression of heat shock protein 72 in transgenic mice decreases infarct size in vivo. Circulation 1996;94:1408-11.
    8.Lindquist S, Craig EA. The heat shock proteins. Annu Rev Res 1988;22:631-77.
    9.Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 1998;79:129-68.
    10.Frydman J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 2001;70:603-47.
    11.Wegele H, Muller L, Buchner J. Hsp70 and Hsp90-a relay team for protein folding. Rev Physiol Biochem Pharmacol 2004;151:1-44.
    12.Planas AM, Soriano MA, Estrada A, Sanz O, Martin F, Ferrer I. The heat shock stress response after brain lesions: induction of 72 kDa heat shock protein (cell types involved, axonal transport, transcriptional regulation) and protein synthesis inhibition. Prog Neurobiol 1997;51:607-36.
    13.Nollen EA, Brunsting JE, Roelofsen H, Weber LA, Kampinga HH. In vivo chaperone activity of heat shock protein 70 and thermo-tolerance. Mol Cell Biol 1999;19:2067-79.
    14.Lee JE, Yenari MA, Sun GH, Xu L, Emond MR, Cheng D, Steinberg GK, Giffard RG. Differential neuroprotection from human heat shock protein 70 over-expression in vitro and in vivo models of ischemia and ischemia-like conditions. Exp Neurol 2001;170:129-39.
    15.Chang HT, Pai TW, Fan TC, Su BH, Wu PC, Tang CY, Chang CT, Liu SH, Chang MD. A reinforced merging methodology for mapping unique peptide motifs in members of protein families. BMC Bioinformatics 2006;7: 38.
    16.Morimoto RI. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 1998;12:3788-96.
    17.Giffard RG, Xu L, Zhao H, Carrico W, Ouyang Y, Qiao Y, Sapolsky R, Steinberg G, Hu B. and Yenari MA. Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. J Exp Biol 2004;207:3213-20.
    18.Shinder GA, Lacourse MC, Minotti S, Durham HD. Mutant Cu/Zn-Superoxide Dismutase Proteins Have Altered Solubility and Interact with Heat Shock/Stress Proteins in Models of Amyotrophic Lateral Sclerosis. J Biol Chem 2001;276:12791-6.
    19.Johnson WG. Late-onset neurodegenerative diseases- the role of protein insolubility.(review)J Anat 2000;196:609-16.
    20.Jain MR, Ge WW, Elkabes S, Li H. Amyotrophic lateral sclerosis: protein chaperone dysfunction revealed by proteomic studies of animal models. Proteomics Clin Appl 2008;2:670-84.
    21.Shinder GA, Lacourse MC, Minotti S, Durham HD. Mutant Cu/Zn-superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of amyotrophic lateral sclerosis.J Biol Chem 2001;276:12791-6.
    22.Sun Yu, MacRae TH. The small heat shock proteins and their role in human disease. J FEBS 2005;272:2613-27.
    23.Mosser DD, Caron AW, Bourge TL, Denis-Larose C, Massie B.Role of the human heat shock protein hsp70 in protection against stress- induced apoptosis. Mol Cell Biol 1997;17: 5317-27.
    24.Nirmalanathan N, Greensmith L. Amyotrophic lateral sclerosis: recent advances and future therapy. Curr Opin Neurol 2005;18:712-9.

    References of Chapter 4

    1.Mitchell JD, Borasio GD. Amyotrophic lateral sclerosis. Lancet 2007;369:2031-41.
    2.Brooks BR, Miller RG, Swash M, Munsat TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000;1:293-9.
    3.Radunovic A, Mitsumoto H, Leigh PN. Clinical care of patients with amyotrophic lateral sclerosis. Lancet Neurol 2007;6:913-25.
    4.Davenport RJ, Swingler RJ, Chancellor AM, Warlow CP. Avoiding false positive diagnoses of motor neuron disease: lessons from the Scottish Motor Neuron Disease Register. J Neurol Neurosurg Psychiatry 1996;60:147-51.
    5.Traynor BJ, Codd MB, Corr B, Forde C, Frost E, Hardiman O. Amyotrophic lateral sclerosis mimic syndromes: a population-based study. Arch Neurol 2000;57:109-13.
    6.Chio A, Cucatto A, Calvo A, Terreni AA, Magnani C, Schiffer D. Amyotrophic lateral sclerosis among the migrant population to Piemonte, northwestern Italy. J Neurol 1999;246:175-80.
    7.Cronin S, Greenway MJ, Ennis S, Kieran D, Green A, Prehn JH, Hardiman O. Elevated serum angiogenin levels in ALS. Neurology 2006;67:1833-6.
    8.Henkel JS, Engelhardt JI, Siklos L, Simpson EP, Kim SH, Pan T, Goodman JC, Siddique T, Beers DR, Appel SH. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 2004;55:221-35.
    9.Mitsumoto H, Ulug AM, Pullman SL, Gooch CL, Chan S, Tang MX, Mao X, Hays AP, Floyd AG, Battista V, Montes J, Hayes S, Dashnaw S, Kaufmann P, Gordon PH, Hirsch J, Levin B, Rowland LP, Shungu DC. Quantitative objective markers for upper and lower motor neuron dysfunction in ALS. Neurology 2007;68:1402-10.
    10.Nagata T, Nagano I, Shiote M, Narai H, Murakami T, Hayashi T, Shoji M, Abe K. Elevation of MCP-1 and MCP-1/VEGF ratio in cerebrospinal fluid of amyotrophic lateral sclerosis patients. Neurol Res 2007;29:772-6.
    11.Ranganathan S, Nicholl GC, Henry S, Lutka F, Sathanoori R, Lacomis D, Bowser R. Comparative proteomic profiling of cerebrospinal fluid between living and post mortem ALS and control subjects. Amyotroph Lateral Scler 2007;8:373-9.
    12.Ranganathan S, Williams E, Ganchev P, Gopalakrishnan V, Lacomis D, Urbinelli L, Newhall K, Cudkowicz ME, Brown RH, Jr., Bowser R. Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J Neurochem 2005;95:1461-71.
    13.Tanaka M, Kikuchi H, Ishizu T, Minohara M, Osoegawa M, Motomura K, Tateishi T, Ohyagi Y, Kira J. Intrathecal upregulation of granulocyte colony stimulating factor and its neuroprotective actions on motor neurons in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2006;65:816-25.
    14.Ludolph AC. Motor neuron disease: urgently needed-biomarkers for amyotrophic lateral sclerosis. Nat Rev Neurol 2011;7:13-4.
    15.Ryberg H, Bowser R. Protein biomarkers for amyotrophic lateral sclerosis. Expert Rev Proteomics 2008;5:249-62.
    16.Mitchell RM, Freeman WM, Randazzo WT, Stephens HE, Beard JL, Simmons Z, Connor JR. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology 2009;72:14-9.
    17.Kalmar B, Burnstock G, Vrbova G, Urbanics R, Csermely P, Greensmith L. Upregulation of heat shock proteins rescues motoneurones from axotomy-induced cell death in neonatal rats. Exp Neurol 2002;176:87-97.
    18.Mailhos C, Howard MK, Latchman DS. Heat shock protects neuronal cells from programmed cell death by apoptosis. Neuroscience 1993;55:621-7.
    19.Pratt AJ, Getzoff ED, Perry JJ. Amyotrophic lateral sclerosis: update and new developments. Degenerative neurological and neuromuscular disease 2012;1:1-14.
    20.Watanabe M, Dykes-Hoberg M, Culotta VC, Price DL, Wong PC, Rothstein JD. Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol Dis 2001;8:933-41.
    21.Bruening W, Roy J, Giasson B, Figlewicz DA, Mushynski WE, Durham HD. Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J Neurochem 1999;72:693-9.
    22.Ulloa L, Messmer D. High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev 2006;17:189-201.
    23.Lo Coco D, Veglianese P, Allievi E, Bendotti C. Distribution and cellular localization of high mobility group box protein 1 (HMGB1) in the spinal cord of a transgenic mouse model of ALS. Neurosci Lett 2007;412:73-7.
    24.Casula M, Iyer AM, Spliet WG, Anink JJ, Steentjes K, Sta M, Troost D, Aronica E. Toll-like receptor signaling in amyotrophic lateral sclerosis spinal cord tissue. Neuroscience 2011;179:233-43.
    25.Abdulahad DA, Westra J, Bijzet J, Limburg PC, Kallenberg CGM, Bijl M. High mobility group box 1(HMGB1) and anti-HMGB1 antibodies and their realtion to disease characteristics in systemic lupus erythematosis. Arthritis Res Ther 2011;13:R71.
    26.Tsan MF. Heat shock proteins and high mobility group box 1 protein lack cytokine function. J leukoc Biol 2011;89:847-53.
    27.Wu T, Tanguay RM. Antibodies against heat shock proteins in environmental stresses and diseases: friend or foe? Cell Stress Chaperones 2006;11:1-12.
    28.Wu T, Ma J, Chen S, Sun Y, Xiao C, Gao Y, Wang R, Poudrier J, Dargis M, Currie RW, Tanguay RM. Association of plasma antibodies against the inducible Hsp70 with hypertension and harsh working conditions. Cell Stress Chaperones 2001; 6: 394-401.
    29.Wu T C, Tanguay RM, Wu Y, He HZ, Xu DG, Feng JD, Shi WX, Zhang GG. Presence of antibodies to heat stress proteins and its possible significance in workers exposed to high temperature and carbon monoxide. Biomed Environ Sci. 1996; 9:370-9.
    30.Wang MY, Ross-Cisneros FN, Aggarwal D, Liang CY, Sadun AA. Receptor for advanced glycation end products is upregulated in optic neuropathy of Alzheimer's disease. Acta Neuropathol 2009;118:381-9.
    31.Maatkamp A, Vlug A, Haasdijk E, Troost D, French PJ, Jaarsma D. Decrease of Hsp25 protein expression precedes degeneration of motoneurons in ALS-SOD1 mice. Eur J Neurosci 2004;20:14-28.
    32.Casula M, Iyer AM, Spliet WG, Anink JJ, Steentjes K, Sta M, Troost D, Aronica E. Toll-like receptor signaling in amyotrophic lateral sclerosis spinal cord tissue. Neuroscience 2011;179:233-43.
    33.Brown IR. Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci 2007;1113:147-58.
    34.Franklin TB, Krueger-Naug AM, Clarke DB, Arrigo AP, Currie RW. The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. Int J Hyperthermia 2005;21:379-92.
    35.Pratt AJ, Getzoff ED, Perry JJ. Amyotrophic lateral sclerosis: update and new developments. Degener Neurol Neuromuscul Dis 2012;2:1-14.
    36.Dantes M, McComas A. The extent and time course of motoneuron involvement in amyotrophic lateral sclerosis. Muscle Nerve 1991;14:416-21.
    37.Taylor DM, Tradewell ML, Minotti S, Durham HD. Characterizing the role of Hsp90 in production of heat shock proteins in motor neurons reveals a suppressive effect of wild-type Hsf1. Cell Stress Chaperones 2007;12:151-62.
    38.Ilzecka J, Stelmasiak Z. Anti-annexin V antibodies in the cerebrospinal fluid and serum of patients with amyotrophic lateral sclerosis. Neurol Sci 2003;24:273-4.
    39.Ilzecka J. Serum-soluble receptor for advanced glycation end product levels in patients with amyotrophic lateral sclerosis. Acta Neurol Scand 2009;120:119-22.
    40.Bucciarelli LG, Wendt T, Rong L, Lalla E, Hofmann MA, Goova MT, Taguchi A, Yan SF, Yan SD, Stern DM, Schmidt AM. RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for homeostasis and chronic disease. Cell Mol Life Sci 2002;59:1117-28.
    41.Lue LF, Yan SD, Stern DM, Walker DG. Preventing activation of receptor for advanced glycation endproducts in Alzheimer's disease. Curr Drug Targets CNS Neurol Disord 2005;4:249-66.
    42.Zhang H, Tasaka S, Shiraishi Y, Fukunaga K, Yamada W, Seki H, Ogawa Y, Miyamoto K, Nakano Y, Hasegawa N, Miyasho T, Maruyama I, Ishizaka A. Role of soluble receptor for advanced glycation end products on endotoxin-induced lung injury. Am J Respir Crit Care Med 2008;178:356-62.
    43.Babu GN, Kumar A, Chandra R, Puri SK, Kalita J, Misra UK. Elevated inflammatory markers in a group of amyotrophic lateral sclerosis patients from northern India. Neurochem Res 2008;33:1145-9.
    44.Moreau C, Devos D, Brunaud-Danel V, Defebvre L, Perez T, Destee A, Tonnel AB, Lassalle P, Just N. Elevated IL-6 and TNF-alpha levels in patients with ALS: inflammation or hypoxia? Neurology 2005;65:1958-60.

    References of Chapter 5

    1.Consilvio C, Vincent AM, Feldman EL. Neuroinflammation, COX-2 and ALS a dual role? Exp Neurol 2004;187:1–10.
    2.Shaw P J. Glutamate, excitotoxicity and amyotrophic lateral sclerosis. J Neurol 1997; 244: S3-S14.
    3.Farah C A, Nguyen MD, Julien JP, Leclerc N. Altered levels and distribution of microtubule-associated proteins before disease onset in a mouse model of amyotrophic lateral sclerosis. J Neurochem 2003;84:77-86.
    4.Sasaki S, Iwata M. Impairment of fast axonal transport in the proximal axons of anterior horn neurons in amyotrophic lateral sclerosis. Neurology 1996;47:535-40.
    5.Chalabi AA, Leigh PN. Recent advances in amyotrophic lateral sclerosis. Current Opinion in Neurology 2000;13:397-405.
    6.Barber SC, Shaw PJ. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Rad Biol Med 2010;48:629-41.
    7.Brown IR. Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci 2007;1113:147-58.
    8.Jolly C, Morimoto RI. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Canc Ins 2000;92: 1564-72.
    9.Wagner M, Hermanns I, Bittinger F, Kirkpatrick CJ. Induction of stress proteins in human endothelial cells by heavy metal ions and heat shock. Am J Physiol 1999;277: 1026-33.
    10.Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 2005;10:86-103.
    11.McGeer PL, G. McGeer EG. Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve2001;26:459-70.
    12.Gowing G, Dequen F, Soucy G, Julien PJ. Absence of tumor necrosis factor-α does not affect motor neuron disease caused by superoxide dismutase 1 mutations. J Neurosci 2006;26:11397-402.
    13.Minghetti L. Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 2005;8:315-21.
    14.Barbeito LH, Pehar M, Cassina P. A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis. Brain Res Rev 2004;47:1-3.
    15.Pehar M, Cassina P, Vargas MR. Astrocytic production of nerve growth factor in motor neuron apoptosis: implications for amyotrophic lateral sclerosis. J Neurochem 2004;89:464-73.
    16.Beers DR, Henkel JS, Zhao W, Wang J, Appel SH. CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc Natl Acad Sci USA 2008;105:1555-63.
    17.Troost D, Van denOord JJ, V de Jong JMB.“Immunohistochemical characterization of the inflammatory infiltrate in amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 1990;16: 401–10.
    18.Kawamata T, Akiyama H, Yamada T, McGeer PL. Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am J Pathol1992;140:691-707.
    19.Lo Coco D, Veglianese P, Allievi E, Bendotti C. Distribution and cellular localization of highmobility group box protein 1 (HMGB1) in the spinal cord of a transgenic mouse model of ALS. Neurosci Lett 2007;412:73–7.
    20.Takata K, Kitamura K, Kakimura JI. Role of high mobility group protein-1 (HMG1) in amyloid-β homeostasis. Biochem Biophys Res Commun 2003;301: 699–703.
    21.Boix E, Nogu´es MV. Mammalian antimicrobial proteins and peptides: overview on the RNase A superfamily members involved in innate host defence. Mol BioSys 2007;3:317-35.
    22.Hogan SP, Rosenberg HF, Moqbel R. Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 2008;38: 709–50.
    23.Harrison AM, Bonville CA, Rosenberg HF, Domachowske JB. Respiratory syncytical virus-induced chemokine expression in the lower airways: eosinophil recruitment and degranulation. Am J Respir Crit Care Med 1999;159:1918-24.
    24.Domachowske JB, Dyer KD, Bonville CA, Rosenberg HF. Recombinant human eosinophii-derived neurotoxin/ RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis 1998;177:1458–64.
    25.Yang D, Chen Q, Shao BS. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med 2008;205: 79–90.
    26.Gordon MH. Remarks on Hodgkin’s disease: a pathogenic agent in the glands, and its application in diagnosis. Br Med J 1993;1: 641–4.
    27.Fredens K, Dahl R, Venge P. The Gordon phenomenon induced by the eosinophil cationic protein and eosinophil protein X,” J Allergy Clin Immunol1982;70: 361–6.
    28.Claus D, Lang C, Neundorfer B. Gordon’s reflex phenomenon in Huntington’s disease. Eur Arch Psychiatry Neurol Sci 1987;236:303–8.
    29.Durack DT, Sumi SM, Klebanoff SJ. Neurotoxicity of human eosinophils. Proc Natl Acad Sci USA 1979:76: 1443–7.
    30.Venge P, Bystr¨om J, Carlson M. Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin Exp Allergy 1999;29:1172–86.
    31.Prehn A, Seger RA, Faber J. “The relationship of serum eosinophil cationic protein and eosinophil count to disease activity in children with bronchial asthma,” Pediatr Allergy Immunol 1998;9:197–203.
    32.Winterkamp S, Raithel M, Hahn EG.“Secretion and tissue content of eosinophil cationic protein in Crohn’s disease,”J Clin Gastroenterol 2000;30:170–75.
    33.Fan TC, Chang HT, Chen IW, Wang HY, Chang MDT. A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Traffic 2007; 8:1778–95.
    34.Apetoh L, Ghiringhelli F, Tesniere A.Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007; 13:1050–9.
    35.Frantz S, Kelly RA, Bourcier T. Role of TLR-2 in the activation of nuclear factor B by oxidative stress in cardiac myocytes. J Biol Chem 2001;276: 5197–203.
    36.Foell D, Wittkowski H, Roth J. Mechanisms of disease: a “DAMP” view of inflammatory arthritis. Nat Clin Prac Rheum 2007;3:382–90.
    37.O'Connor KA, Hansen MK, Pugh DR. Further characterization of high mobility group box 1 (HMGB1) as a proinflammatory cytokine: central nervous system effects. Cytokine 2003;24:254–65.
    38.Bianchi ME, Manfredi AA. Dangers in and out. Science 2009;323:1683–4.
    39.Chiu IM, Phatnani H, Kuligowski M. Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice. Proc Natl Acad Sci USA 2009;106:20960–5.
    40.Sur S, Glitz DG, Kita H. Localization of eosinophilderived neurotoxin and eosinophil cationic protein in neutrophilic leukocytes. J Leukoc Biol 1998;63:715–22.
    41.Weaver DF, Heffernan LP, Purdy RA, Ing VW. Eosinophil-induced neurotoxicity: axonal neuropathy, cerebral infarction, and dementia. Neurology 1988;38:144–6.
    42.Durack DT, Ackerman SJ, Loegering DA, Gleich GJ. Purification of human eosinophil-derived neurotoxin. Proc Natl Acad Sci USA 1981;78:5165–9.
    43.Cedarbaum JM. The amyotrophic lateral sclerosis functional rating scale: assessment of activities of daily living in patients with amyotrophic lateral sclerosis. Arch Neurol 1996;53:141–7. The ALS CNTF treatment study (ACTS) Phase I-II Study Group.
    44.Cedarbaum JM, Stambler N. Performance of the amyotrophic lateral sclerosis functional rating scale (ALSFRS) in multicenter clinical trials. J Neurol Scienc 1997;152:S1–S9.
    45.Penninx BWJH, Pahor M, Cesari M. Anemia is associated with disability and decreased physical performance and muscle strength in the elderly. J Am Geri Soci 2004;52:719–724.
    46.Penninx BWJH, Kritchevsky SB, Newman AB. Inflammatory markers and incident mobility limitation in the elderly. J Am Geri Soci 2004;52:1105-13.
    47.Weydt P, M¨oller T. Neuroinflammation in the pathogenesis of amyotrophic lateral sclerosis. Neuroreport 2005;16:527–31.
    48.Henkel JS, Beers DR, Sikl´os L, Appel SH. The chemokineMCP-1 and the dendritic andmyeloid cells it attracts are increased in the mSOD1 mouse model of ALS. Mol Cell Neurosci 2006; 31: 427–37.
    49.Conductier G, Blondeau N, Guyon A, Nahon JL, Rov`ere C. The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol 2010;224:93–100.
    50.Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000;12:121–127.
    51.Huang X, Reynolds AD, Mosley RL, Gendelman HE. CD4+ T cells in the pathobiology of neurodegenerative disorders. J Neuroimmunol 2009;211:3–15.
    52.Raap U, Wardlaw AJ. A new paradigm of eosinophil granulocytes: neuroimmune interactions. Exp Dermatol 2008;17:731–8.
    53.Reynolds A, Laurie C, Lee Mosley R, Gendelman HE. Oxidative stress and the pathogenesis of neurodegenerative disorders. Int Rev Neurobiol 2007;82:297–325.
    54.Babu GN, Kumar A, Chandra R, Puri SK, Kalita J, Misra UK. Elevated inflammatory markers in a group of amyotrophic lateral sclerosis patients from northern India. Neurochem Res 2008;33:1145–9.
    55.Moreau C, Devos D, Brunaud-Danel V. Elevated IL- 6 and TNF-α levels in patients with ALS: inflammation or hypoxia? Neurology 2005;65:1958–60.


    References of Chapter 6

    1.Mitchell JD, Borasio GD. Amyotrophic lateral sclerosis. Lancet 2007;369:2031-41.
    2.Nirmalanathan N, Greensmith L. Amyotrophic lateral sclerosis: recent advances and future therapy. Curr Opin Neurol 2005;18:712-9.
    3.Petersen A, Mani K, Brundin P. Recent advances on the pathogenesis of Huntington’s disease. Exp Neurol 1999;157:1-18.
    4.Johnson WG. Late-onset neurodegenerative diseases- the role of protein insolubility (review)J Anat 2000;196:609-16.
    5.Brouillet E, Hantraye P, Ferrante RJ, Dolan R, Leroy-Willig A, Kowall NW. Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA 1995;92: 7105-9.
    6.Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 2001;293:493-8.
    7.Alston TA, Mela L, Bright HJ. 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proc Natl Acad Sci USA 1977;74: 3767-71.
    8.Huang LS, Sun G, Cobessi D, Wang AC, Shen JT, Tung EY. 3-Nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme. J Biol Chem 2006;281:5965–72.
    9.KenneyAM, Cole MD, Rowitch DH. Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 2003;130:15-28.
    10.Almeida RD, Manadas BJ, Melo CV, Gomes JR, Mendes CS, Graos MM. Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 2005;12:1329-43.
    11.Bemelmans AP, Horellou P, Pradier L, Brunet I, Colin P, Mallet J. Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington’s disease, as demonstrated by adenoviral gene transfer. Hum Gene Ther 1999;10:2987-97.
    12.Tremblay R, Hewitt K, Lesiuk H, Mealing G, Morley P, Durkin JP. Evidence that brain-derived neurotrophic factor neuroprotection is linked to its ability to reverse the NMDA-induced inactivation of protein kinase C in cortical neurons. J Neurochem 1999;72:102-11.
    13.Wu CL, Chen SD, Yin JH, Hwang CS, Yang DI. Erythropoietin and sonic hedgehog mediate the neuroprotective effects of brain-derived neurotrophic factor against mitochondrial inhibition. Neurobiol Dis 2010;40:146-54.
    14.Wu CL, Chen SD, Yin JH, Hwang CS, Yang DI. Erythropoietin and sonic hedgehog mediate the neuroprotective effects of brain-derived neurotrophic factor against mitochondrial inhibition. Neurobiol Dis 2010;40:146-54.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE