簡易檢索 / 詳目顯示

研究生: 陳俊谷
Chen, Chun-Ku
論文名稱: 掌性團聯共聚物之自組裝於螺旋形態之建構
Helical Architectures from Self-assembly of Chiral Block Copolymers
指導教授: 何榮銘
Ho, Rong-Ming
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 英文
論文頁數: 184
中文關鍵詞: 高分子團聯共聚物掌性螺旋三維電子顯微鏡
外文關鍵詞: block copolymer, chiral, helical, electron tomography
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A new helical phase (H* phase) has been found in the self-assembly of poly(styrene)-b-poly(L-lactide) (PS-PLLA) chiral block copolymers (BCPs*) with PS-rich fractions in our laboratory. The formation of the H* phase is attributed to the chiral effect on the self-assembly of the BCPs*. Also, various interesting crystalline PS-PLLA nanostructures (e.g. crystalline helices and crystalline cylinders) could be obtained by controlling the crystallization temperature of PLLA (Tc,PLLA) to adjust environmental conditions (i.e., under soft or hard confinement). The crystallization would affect the self-assembled nanostructures and create various interesting morphologies. Accordingly, the self-assembled morphologies of the PS-PLLA BCPs* are resulted from the mutual interaction of crystallization and microphase separation. The examination of the competition between crystallization and microphase separation from the self-assembly of PS-PLLA BCPs* in solution was thus carried out. In contrast to the self-assembly of BCP* in melt at which the formation of ordered textures is supercooling dependence, a kinetically controlled process by simply adjusting the supersaturation rate was utilized for the control of self-assembly for ordering. Single-crystal lozenge superstructures can be obtained from the slow self-assembly (i.e., low supersaturation rate) of PS-PLLA BCP* with long PS chain (i.e., PS-rich PS-PLLA BCP*) whereas amorphous helical ribbon superstructures were obtained from the fast self-assembly (i.e., high supersaturation rate). Moreover, amorphous flat ribbon superstructures were found in the poly(styrene)-b-poly(D,L-lactide) PS-PLA achiral BCPs, suggesting that the chirality plays an important role in the formation of the helical ribbon superstructures. By contrast, the self-assembly of PS-PLLA BCP* with short PS chain (i.e., PLLA-rich PS-PLLA BCP*) was dominated by the PLLA crystallization regardless of the supersaturation rate, indicating that the length of PS chain in the PS-PLLA BCPs* justifies the relaxation time for PLLA crystallization rate. As a result, the formation of the helical architectures from the self-assembly of the PS-PLLA BCP* is attributed to the effect of chirality from microphase separation but the chiral effect might be overwhelmed by crystallization.
    Recently, a new method, TEM tomography, for imaging the morphologies of soft materials in three-dimension (3D) space, in particular for nanoscale features, has been developed. Through the image reconstruction from a series of tilted projections, a direct imaging of 3D nanoscale objects can be achieved. By taking the advantage of the degradable character of polylactide, PS with helical nanochannels can be prepared first from the self-assembled H* phase after hydrolysis, and then used as a template. Sol-gel reaction was then carried out within this template so as to fabricate helical nanocomposites. As a result, in contrast to the inaccessibility for the reconstruction of projection images from RuO4 stained PS-PLLA samples, the PS/SiO2 nanocomposites can be directly visualized by TEM without staining due to the significant increase in the contrast of the SiO2 helices. Hexagonally packed SiO2 helices were clearly observed through 3D direct visualization. A new H* phase at which hexagonally packed PLLA helices are embedded in a PS matrix with interdigitated character from the self-assembly of PS-PLLA BCPs* was identified.
    An order-order phase transition of chiral block copolymers (BCPs*) from single helix to double gyroid (H*→G) through a nucleation and growth process was demonstrated. The H* and G phases can be obtained by solution casting from fast and slow solvent evaporation, respectively, suggesting that the H* phase is a metasable phase. Consequently, the coexistence of H* and G phase can be found in the solution-cast samples from intermediate evaporation. To truly examine the transition mechanism of the H*→G, electron tomography was carried out to directly visualize the morphological evolution in real space, in particular, the transition zone at the interface. Unlike the mechanisms for the transitions of block copolymers (BCPs) by considering the inter-domain spacing matching, a significant mismatch in the lattices for the H*→G was found. Consequently, the transition may require the lattice rotation along the helical central axis so as to justify the corresponding lattice mismatch. As a result, the morphological observations from electron tomography offer new insights into the BCP phase transitions.
    In contrast to the chiral effect on the self-assembly of PS-rich PS-PLLA BCPs*, the chirality driven core-shell cylinder phase (CS* phase) can be obtained in PS-PLLA BCPs* with PLLA-rich fractions. We suggest that the observed core-shell cylinder nanostructure is the consequence of chirality driven twisting and bending origins from bilayered nanostructure through the scrolling of helical microdomains. As a result, the chirality driven nanostructures with helical sense for achiral components provides crucial information for scientific research. Moreover, tubular nanostructures can be simply obtained by hydrolyzing the degradable PLLA block of the CS* phase; it provides an easy and convenient way of fabricating tubular nanostructures with unique applications in nanotechnologies.
    To investigate the mechanisms of chiral information transfer from molecular level to macroscopic level through self-assembly, a serious of PS-PLLA and PS-PDLA BCPs* were synthesized. Circular dichroism (CD), scanning probe microscopy (SPM) and electron tomography were used to examine the handedness of helical chain conformations, helical superstructures and helical phases (H* phases), respectively. On the basis of the CD results, the handedness of the helical chain conformation can be characterized in solution. The results indicated that the PS-PLLA and PS-PDLA BCPs* possess left- and right- handed helical chain conformations, respectively. Subsequently, left-handed helical superstructures were found from both the self-assembly of PS-PLLA and PS-PDLA BCPs* in solution. For the identification of the handedness of the H* phases in bulk, it is noted that the handedness of helices is difficult to be directly determined from 2D TEM projection. Therefore, a three-dimensional (3D) TEM imaging was carried out to examine the handedness of the H* phases. The results of electron tomography indicated that both the PS-PLLA and PS-PDLA BCPs* self-assemble into left-handed H* phases. As a result, the chiral information transfer may be missing as the BCPs* self-assemble into higher organizational levels.


    Abstract I Contents V List of Tables VIII List of Figures IX Chapter 1 Introduction 1 1.1 Self-assembly of Block Copolymers in Bulk 1 1.2 Self-assembly of Block Copolymers in Solution 3 1.3 Helical Architectures in Different Length Scales 5 1.3.1 Helical Conformations 6 1.3.2 Helical Superstructures 8 1.3.3 Helical Phases 12 1.4 Self-assembly of Chiral Block Copolymers (BCPs*) 14 1.4.1 Chiral Conformations 16 1.4.2 Chiral Superstructures 18 1.4.3 Chiral Phases 18 1.5 Competition between Microphase Separation and Crystallization in Semi-crystalline Block Copolymers 23 1.6 Electron Tomography in Identification of Complex Structures 30 1.7 Phase Transitions in Block Copolymers 34 1.8 Core-Shell Cylinder Nanostructures from Self-assembly of Block Copolymers 39 1.9 Theory of Titled Chiral Lipid Bilayers (TCLB) 45 1.10 Chiral Information Transfer 49 Chapter 2 Objectives 56 Chapter 3 Experimental Details 62 3.1 Synthesis 62 3.2 Preparation of Bulk Samples 67 3.3 Preparation of Solution Samples 69 3.4 Sol-Gel Procedure 70 3.5 Electron Tomography 71 3.6 Characterization of Nanostructures 71 Chapter 4 Results and Discussion 74 4.1 Kinetically Controlled Self-assembled Superstructures from Semi-Crystalline PS-PLLA BCPs* 74 4.1.1 Initial Morphologies of PS-rich PS-PLLA BCP* in Solution 76 4.1.2 Slow Self-assembly of PS-rich PS-PLLA BCP* in Solution 79 4.1.3 Fast Self-assembly of PS-rich PS-PLLA BCP* in Solution 83 4.1.4 Competition between Crystallization and Microphase Separation from Self-assembly of PS-rich PS-PLLA BCP* in Solution 88 4.1.5 Self-assembly of PS-PLA Achiral BCP in Solution 91 4.1.6 Self-assembly of PLLA-rich PS-PLLA BCP* in Solution 93 4.2 Electron Tomography for Identification of H* Phase 99 4.2.1 Staining Effect 99 4.2.2 Projection Effect 102 4.2.3 Identification of H* Phase 114 4.3 Phase Transition from Single Helix to Double Gyroid (H*→G) in PS-PLLA BCPs* 119 4.3.1 H*→G by Control of Solvent Evaporation Rate 121 4.3.2 Examination of H*→G through Electron Tomography 127 4.3.3 Transition Mechanism of the H*→G 130 4.4 New Phase in PLLA-rich PS-PLLA BCPs* 135 4.4.1 Thermal Behavior of PLLA-rich PS-PLLA BCPs* 135 4.4.2 A Core-shell Cylinder Phase with Helical Sense, a CS* Phase 138 4.4.3 Tubular Nanostructure from CS* Phase 142 4.4.4 Mechanism for Formation of CS* Phase 143 4.5 Chiral Information Transfer in Self-assembly of BCPs* 148 4.5.1 Chiral Conformations 149 4.5.2 Chiral Superstructures 150 4.5.3 Chiral Phases 154 Chapter 5 Conclusions 167 Chapter 6 References 172 Publications 181 Acknowledgements 183

    1. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
    2. Lehn, J.-M. Supramolecular Chemistry. Concepts and Perspectives, VCH, Weinheim, 1995.
    3. Prockop, D. J.; Fertala, A. J. Struct. Biol. 1998, 122, 111.
    4. Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
    5. Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660.
    6. Matsen, M. W.; Bates, F. S. Macromolecules 1995, 28, 8796.
    7. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
    8. Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
    9. Shen, H.; Eisenberg, A. J. Phys. Chem. B. 1999, 103, 9473.
    10. Discher, D. E.; Eisenberg, A. Science 2002, 297, 967.
    11. Abbas, B.; Li, Z.; Hassan, H.; Lodge, T. P. Macromolecules 2007, 40, 4048.
    12. Cornelissen, J. J. L. M.; Donners, J. J. J. M.; Gelder, R. E.; Graswinckel, W. S.; Metselaar, G. A.; Rowan, A. E.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science 2001, 293, 676.
    13. Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Science 1997, 277, 1793.
    14. Mio, M. J.; Prince, R. B.; Moore, J. S.; Kuebel, C.; Martin, D. C. J. Am. Chem. Soc. 2000, 122, 6134.
    15. Prince, R. B.; Brunsveld, L.; Meijer, E. W.; Moore, J. S. Angew. Chem. Int. Ed. 2000, 39, 228.
    16. Lokey, R. S.; Iverson, B. L. Nature 1995, 375, 303.
    17. Hanan, G. S.; Lehn, J.-M.; Kyritsakas, N.; Fischer, J. J. Chem. Soc. Chem. Commun. 1995, 765.
    18. Cuccia, L. A.; Lehn, J.-M.; Homo, J.-C.; Schmutz, M. Angew. Chem. Int. Ed. 2000, 39, 233.
    19. Sone, E. D.; Zubarev, E. R.; Stupp, S. I. Angew. Chem. Int. Ed. 2002, 41, 1705.
    20. Li, C. Y.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann I. K.; Harris, F. W.; Chien, L.-C.; Yan, D.; He, T.; Lotz, B. Phys. Rev. Lett. 1999, 83, 4558.
    21. Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann, I. K.; Chien, L.-C.; Harris, F. W.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 72.
    22. Stadler, R.; Auschra, C.; Beckmann, J.; Krappe, U.; Voigt- Martin, I.; Leibler, L. Macromolecules 1995, 28, 3080.
    23. Krappe, U.; Stadler, R.; Voigt-Martin, I. Macromolecules 1995, 28, 4558.
    24. Goldacker, T.; Abetz, V.; Stadler, R.; Erukhimovich, I.; Leibler, L. Nature 1999, 398, 137.
    25. Sommerdijk, N. A. J. M.; Holder, S. J.; Hiorns, R. C.; Jones, R. G.; Nolte, R. J. M. Macromolecules 2000, 33, 8289.
    26. Yashima, E.; Huang, S.; Matsushima, T.; Okamoto, Y. Macromolecules 1995, 28, 4184.
    27. Yashima, E.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1997, 119, 6345.
    28. Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. J. M.; Nolte, R. J. M. Science, 1998, 280, 1427.
    29. Sakurai, S-.I.; Kuroyanagi, K.; Morino, K.; Kunitake, M.; Yashima, E. Macromolecules 2003, 36, 9670.
    30. Xiang, H.; Shin, K.; Kim, T.; Moon, S.; McCarthy, T. J.; Russell, T. P. Macromolecules 2005, 38, 1055.
    31. Xiang, H.; Shin, K.; Kim, T.; Moon, S.; McCarthy, T. J.; Russell, T. P. J. Polym. Sci. Part B: Polym. Phys. 2005, 43, 3377.
    32. Wikipedia, http://en.wikipedia.org/
    33. Green, M. M.; Garetz, B. A.; Munoz, B.; Chang, H.-P.; Hoke, S. R.; Cooks, G. J. Am. Chem. Soc. 1995, 117, 4181.
    34. Green, M. M.; Peterson, N. C.; Sato, T.; Teramoto, A.; Cook, R.; Lifson, S. Science 1995, 268, 1860.
    35. Mayer, S.; Zental, R. Macromol. Rapid Commun. 2000, 21, 927.
    36. Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H. J. Am. Chem. Soc. 2004, 126, 2704.
    37. Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. J. Am. Chem. Soc. 2001, 123, 1519.
    38. Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. J. Am. Chem. Soc. 2002, 124, 12761.
    39. Ho, R.-M.; Chen, C.-K.; Chiang, Y.-W. Macromol. Rapid. Commun. 2009, 30, 1439.
    40. Xu, J.-T.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chaibundit, C. Macromolecules 2002, 35, 6937.
    41. Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews, E. Macromolecules 1996, 29, 8835.
    42. Ho, R.-M.; Lin, F.-H.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Hsiao, B. S.; Sics, I. Macromolecules 2004, 37, 5985.
    43. Ishikawa, S. Polymer 1993, 34, 3744.
    44. Cohen, R. E.; Cheng, P.-L.; Douzinas, K.; Kofinas, P.; Berney, C. V. Macromolecules 1990, 23, 324.
    45. Loo, Y. -L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365.
    46. Chiang, Y.-W.; Ho, R.-M.; Ko, B.-T.; Lin, C.-C. Angew. Chem. Int. Ed. 2005, 44, 7969.
    47. Chiang, Y.-W.; Ho, R.-M.; Thomas, E. L.; Burger, C.; Hsiao, B. S. Adv. Funct. Mater. 2009, 19, 448.
    48. Derosier, D. J.; Klug, A. Nature 1968, 217, 130.
    49. Frank, J. Electron Tomography, 1st ed.; Plenum: New York, 1992. Frank, J. Electron Tomography, 2nd ed.; Springer-Verlag: New York, 2006.
    50. Yamauchi, K.; Takahashi, K.; Hasegawa, H.; Iatrou, H.; Hadjichristidis, N.; Kaneko, T.; Nishikawa, Y.; Jinnai, H.; Matsui, T.; Nishioka, H.; Shimizu, M.; Fukukawa, H. Macromolecules 2003, 36, 6962.
    51. Mareau, V. H.; Akasaka, S.; Osaka, T.; Hasegawa, H. Macromolecules 2007, 40, 9032.
    52. Penkzek, P.; Marko, M.; Buttle, K.; Frank, J. Ultramicroscopy 1995, 60, 393.
    53. Sugimori, H.; Nishi, T.; Jinnai, H. Macromolecules 2005, 38, 10226.
    54. Martin-Moreno, L.; Garcia-Vidal, F. J.; Somoza, A. M. Phys. Rev. Lett. 1999, 83, 73.
    55. Milhaupt, J. M.; Lodge, T. P. J. Polym. Sci. Part B: Polym. Phys. 2001, 39, 843.
    56. Adachi, M.; Okumura, A.; Sivaniah, E.; Hashimoto, T. Macromolecules 2006, 39, 6352.
    57. Hajduk, D. A.; Takenouchi, H.; Hillmyer, M. A.; Bates, F. S.; Vigild, M. E.; Almdal, K. Macromolecules 1997, 30, 3788.
    58. Hajduk, D. A.; Ho, R.-M.; Hillmyer, M. A.; Bates, F. S.; Almdal, K. J. Phys. Chem. B 1998, 102, 1356.
    59. Jinnai, H.; Hasegawa, H.; Nishikawa, Y.; Sevink, G. J. A.; Braunfeld, M. B.; Agard, D. A.; Spontak, R. J. Macromol. Rapid Commun. 2006, 27, 1424.
    60. Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86.
    61. Forster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Macromolecules 1994, 27, 6922.
    62. Wang, C. Y.; Lodge, T. P. Macromolecules 2002, 35, 6997.
    63. Wang, C. Y.; Lodge, T. P. Macromol. Rapid Commun. 2002, 23, 49.
    64. Sakurai, S.; Umeda, H.; Furukawa, C.; Irie, H.; Nomura, S.; Lee, H. H.; Kim, J. K. J. Chem. Phys. 1998, 108, 4333.
    65. Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Mai, S.-M.; Booth, C. Phys. Chem. Chem. Phys. 1999, 1, 2097.
    66. Matsen, M. W. Phys. Rev. Lett. 1998, 80, 4470.
    67. David, J. L.; Gido, S. P.; Hong, K.; Zhou, J.; Mays, J. W.; Tan, N. B. Macromolecules 1999, 32, 3216.
    68. Riess, G.; Schlienger, M.; Marti, G. J. Macromol. Sci., Phys. 1980, B17, 355.
    69. Breiner, U.; Krappe, U.; Abetz, V.; Stadler, R. Macromol. Chem. Phys. 1997, 198, 1051.
    70. Mogi, Y.; Nomura, M.; Kotsuji, K.; Matsushita, Y.; Noda, I. Macromolecules 1994, 27, 6755.
    71. Gido, S. P.; Schwark, D. W.; Thomas, E. L.; Goncalves, M. C. Macromolecules 1993, 26, 2636.
    72. Birshtein, T. M.; Lyatskaya, Y. V.; Zhulina, E. B. Polymer 1992, 33, 2751.
    73. Stadlar, R.; Abetz, V.; Goldacker, T. Macromol. Rapid. Commun. 2000, 21, 16.
    74. T. Goldacker, V. Abetz, Macromolecules 1999, 32, 5165.
    75. Zhong-can, O-Y.; Jixing, L. Phys. Rev. Lett. 1990, 65, 1679.
    76. Zhong-can, O-Y.; Jixing, L. Phys. Rev. A 1991, 43, 6826.
    77. Nakashima, N.; Asakuma, S.; Kunitake, T. J. Am. Chem. Soc. 1985, 107, 509.
    78. Fuhrhop, J.-H.; Schnieder, P.; Boekema, E.; Helfrich, W. J. Am. Chem. Soc. 1988, 110, 2861.
    79. Selinger, J. V.; Schnur, J. M. Phys. Rev. Lett. 1993, 71, 4091.
    80. Guha, S.; Drew, M. G. B.; Banerjee, A. small 2008, 4, 1993.
    81. Messmore, B. W.; Sukerkar, P. A.; Stupp, S. I. J. Am. Chem. Soc. 2005, 127, 7992.
    82. Koga, T.; Matsuoka, M.; Higashi, N. J. Am. Chem. Soc. 2005, 127, 17596.
    83. Malashkevich, V. N.; Kammerer, R. A.; Efimov, V. P.; Schulthess, T.; Engel, J. Science 1996, 274, 761.
    84. Li, C. Y.; Cheng, S. Z. D.; Weng, X.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Calhoun, B. H.; Harris, F. W.; Chien, L.-C.; Lotz, B. J. Am. Chem. Soc. 2001, 123, 2462.
    85. Lotz, B.; Cheng, S. Z. D. Polymer 2005, 46, 577.
    86. Tao, L.; Luan, B.; Pan, C.-Y. Polymer 2003, 44, 1013.
    87. Ho, R.-M.; Chen, C.-K.; Chiang, Y.-W.; Ko, B.-T.; Lin, C.-C. Adv. Mater. 2006, 18, 2355.
    88. Mark, J. E. Physical Properties of Polymers Handbook. New York: AIP Press; 1996
    89. Grulke, E. A. ‘‘Solubility Parameters Values’’, in: Polymer Handbook, J. Brandrup, E. H. Immergut, Eds., Wiley, New York 1989, p. VII, 519ff.
    90. Brandrup, J.; Immergut, E. H. Polymer Handbook Wiley, New York, 1989.
    91. Dondos, A. Acta Polymer. 1994, 45, 355.
    92. Anderson, K. S.; Hillmyer, M. A. Macromolecules 2004, 37, 1857.
    93. Miyata, T.; Masuko, T. Polymer 1997, 38, 4003.
    94. Cartier, L.; Okihara, T.; Lotz, B. Macromolecules 1997, 30, 6313.
    95. Reneker, D. H.; Geil, P. H. J. Appl. Phys. 1960, 31, 1916.
    96. Zheng, J. X.; Xiong, H.; Chen, W. Y.; Lee, K.; Van Horn, R. M.; Quirk, R. P.; Lotz, B.; Thomas, E. L.; Shi, A.-C.; Cheng, S. Z. D. Macromolecules 2006, 39, 641.
    97. Nandi, N.; Bagchi, B. J. Am. Chem. Soc. 1996, 118, 11208.
    98. Cheng, S. Z. D. Phase Transitions in Polymers: The Role of Metastable States, Elsevier, Oxford 2008
    99. Heuschen, J.; Jerome, R.; Teyssie, P. H. J. Polym. Sci., Part B: Polymer Physics, 1989, 27,523.
    100. Ho, R.-M.; Chiang, Y.-W.; Chen, C.-K.; Wang, S.-W.; Hasegawa, H.; Akasaka, S.; Thomas, E. L.; Burger, C.; Hsiao, B. S. in preparation.
    101. Tseng, W.-H.; Chen, C.-K.; Chiang, Y.-W.; Ho, R.-M.; Akasaka, S.; Hasegawa, H. J. Am. Chem. Soc. 2009, 131, 1356.
    102. Kim, G.; Libera, M. Macromolecules 1998, 31, 2569.
    103. Zhang, Q.; Tsui, O. K. C.; Du, B.; Zhang, F.; Tang, T.; He, T. Macromolecules 2000, 33, 9561
    104. Honda, T.; Kawakatsu, T, Macromolecules 2006, 39, 2340.
    105. Pinna, M.; Zvelindovsky, A. Soft Matter 2008, 4, 316.
    106. Ho, R.-M.; Tseng, W.-H.; Fan, H.-W.; Chiang, Y.-W.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H. Polymer 2005, 46, 9362.
    107. Liu, G.; Ding, J. Adv. Mater. 1998, 10, 69.
    108. Li, Z.; Liu, G. Langmuir 2003, 19, 10480.
    109. Yan, X.; Liu, G.; Li, Z. J. Am. Chem. Soc. 2004, 126, 10059.
    110. Lin, S.-C.; Lin, T.-F.; Ho, R.-M.; Chang, C.-Y.; Hsu, C.-S. Adv. Funct. Mater. 2008, 18, 3386.
    111. Miyagawa, T.; Yamamoto, M.; Muraki, R.; Onouchi, H.; Yashima, E. J. Am. Chem. Soc. 2007, 129, 3676.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE