簡易檢索 / 詳目顯示

研究生: 陳胤禎
Chen, Ying-Chen
論文名稱: 米氏酸衍生物之反應性高分子合成及其材料性質研究
Synthesis and properties of Meldrum's acid derivatives reactive polymer
指導教授: 劉英麟
Liu, Ying-Ling
口試委員: 童世煌
Tung, Shih-Huang
陳俊太
Chen, Jiun-Tai
劉振良
Liu, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 116
中文關鍵詞: 米氏酸反應性高分子
外文關鍵詞: Meldrum's acid, Reactive polymer
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以米氏酸單體及衍生物合成具有反應性官能基的高分子為目的。第一部分先合成帶有雙端米氏酸官能基之單體(MPM),因二異氰酸酯官能基能催化米氏酸的熱裂解開環溫度,可於較低溫下生成烯酮官能基,並與脂肪族及芳香族的二異氰酸酯進行加成反應,合成具有反應選擇性的azetidine-2,4-dione官能基,但所合成之高分子的溶解度相當差,嘗試改變反應物的當量比或加入醇類皆無法改善其溶解性,因此無法進行後續的加工應用。
    第二部分則利用米氏酸結構上高反應性的C-H鍵與二異氰酸酯進行反應,成功合成帶有米氏酸結構的聚醯胺高分子,其中與脂肪族的二異氰酸酯合成之高分子溶解度較差,而與芳香族的二異氰酸酯合成之高分子溶解度較好。因此使用兩倍當量的芳香族二異氰酸酯合成尾端帶有異氰酸官能基的寡聚物,並加入乙二醇、聚乙二醇或己二醇進行合成反應,製備帶有可自交聯特性的米氏酸官能基、醯胺官能基及氨基甲酸乙酯官能基之高分子,且具有良好的溶解性,並利用此三種高分子進行熱交聯反應製備薄膜及熱固性樹酯。


    The purpose of this study is to synthesize reactive polymers based on Meldrum’s acid (MA) derivatives. In the first section, a bifunctional Meldrum’s acid compound (MPM) is synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy. MPM has been used as a monomer to react with diisocyanate compounds for preapartion polymers possessing azetidine-2,4-dione groups. It is found that the isocyanate group might catalyze the thermolysis reaction of MA groups. Nevertheless, due to the poor organosolubility of the obvtained polymers, further studies are blocked.
    In the second section, polyamide possessing MA groups have prepared through the reaction between the highly reactive C-H bond of MA and isocyanate group. Polyamide from aromatic diisocyanate precursor shows better solubility than that from aliphatic diisocyanate. Consequently, excess aromatic diisocyanate has been employed to result in telechelic MA-containing oligomers with isocyanate endgroups, which have been further reacted with ethylene glycol, polyethylene glycol, and 1,6-hexanediol to result in the corresponding MA-containing polyamide-urethane. The polymers show good organosolubility for further processing. Based on the thermally-induced MA reactions, the polymers are self-crosslinkable. The corresponding thermosetting resins have been prepared and their properties are discussed.

    誌謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 研究方向 6 第二章 文獻回顧 7 2-1 米氏酸(Meldrum’s acid)之簡介 7 2-2 米氏酸衍生物之合成反應 12 2-3 米氏酸衍生物產生烯酮官能基之合成與應用 15 2-4 低烯酮官能基生成溫度之催化作用 22 2-5 Azetidine-2,4-dione之合成方法 28 第三章 實驗方法 30 3-1 實驗藥品 30 3-2 儀器設備 32 3-3 實驗步驟 34 3-3-1 含有雙米氏酸結構的MPM單體製備 34 3-3-2 含azetidine-2,4-dione官能基的高分子製備 35 3-3-3 利用過量合成含有azetidine-2,4-dione高分子 37 3-3-4 MPM-HDI-EG高分子製備 39 3-3-5 利用prepolymer製備PU-MPM高分子 40 3-3-6 利用米氏酸與脂肪族二異氰酸酯製備MA_HDI 41 3-3-7 利用米氏酸與芳香族二異氰酸酯製備MA_MDI 42 3-3-8 製備可自交聯的高分子MA_MDI_EG 43 3-3-9 以熱交聯反應製備Cr-MA_MDI_EG 44 3-3-10 製備可自交聯的高分子MA_MDI_PEG 45 3-3-11 以熱交聯反應製備Cr-MA_MDI_PEG 46 3-3-12 製備可自交聯的高分子MA_MDI_diol 47 3-3-13 以熱交聯反應製備Cr-MA_MDI_diol 48 第四章 結果與討論 49 4-1 研究架構 49 4-2 MPM之鑑定 52 4-3 含有azetidine-2,4-dione的高分子之鑑定 56 4-2-1 MPM-MDI之鑑定 56 4-2-2 MPM-HDI之鑑定 61 4-4 利用過量合成含有azetidine-2,4-dione高分子 66 4-3-1 MPM-MDI_1:1.1/1:1.2之鑑定 66 4-3-2 MPM-HDI_1:1.1/1:1.2之鑑定 68 4-5 MPM-HDI-EG高分子之鑑定 70 4-6 利用prepolymer製備PU-MPM高分子之鑑定 74 4-5-1 isocyanate-terminated-PU prepolymer之鑑定 74 4-5-2 PU-MPM高分子之鑑定 76 4-7 MA_HDI高分子之鑑定 78 4-8 MA_MDI高分子之鑑定 81 4-9 MA_MDI_EG高分子之鑑定 85 4-10 Cr-MA_MDI_EG之鑑定 90 4-11 MA_MDI_PEG高分子之鑑定 94 4-12 Cr-MA_MDI_PEG之鑑定 98 4-13 MA_MDI_diol高分子之鑑定 102 4-14 Cr-MA_MDI_diol之鑑定 107 第五章 結論 111 第六章 參考文獻 113

    1. Dai, S. A.; Juang, T.-Y.; Chen, C.-P.; Chang, H.-Y.; Kuo, W.-J.; Su, W.-C.; Jeng, R.-J., Synthesis of N-aryl azetidine-2,4-diones and polymalonamides prepared from selective ring-opening reactions. Journal of Applied Polymer Science 2007, 103 (6), 3591-3599.
    2. H. Staudinger; O. Göhring; Schöller, M., Ketene, XXV. Über die Einwirkung von Säurechloriden auf Diphenylketen. European Journal of Inorganic Chemistry 1914, 47 (1), 40–48.
    3. James Cuthbert Martin; Robert D. Burpitt; P. Glenn Gott; Melvin Harris; Meen, R. H., Ketenes. XIII. Reactions of ketenes with heterocumulenes. The Journal of Organic Chemistry 1971, 36 (16), 2205-2210.
    4. Staudinger, H., Ketene, eine neue Körperklasse. Berichte der deutschen chemischen Gesellschaft 1905, 38 (2), 1735-1739.
    5. Tidwell, T. T., Ketene chemistry after 100 Years: ready for a new century. European Journal of Organic Chemistry 2006, 2006 (3), 563-576.
    6. Leibfarth, F. A.; Hawker, C. J., The emerging utility of ketenes in polymer chemistry. Journal of Polymer Science Part A: Polymer Chemistry 2013, 51 (18), 3769-3782.
    7. Wolpert, D.; Schade, M.; Brixner, T., Femtosecond midinfrared study of the photoinduced Wolff rearrangement of diazonaphthoquinone. Journal of Chemical Physics 2008, 129 (9), 094504.
    8. Leibfarth, F. A.; Kang, M.; Ham, M.; Kim, J.; Campos, L. M.; Gupta, N.; Moon, B.; Hawker, C. J., A facile route to ketene-functionalized polymers for general materials applications. Nature Chemistry 2010, 2 (3), 207-212.
    9. González, L.; Ramis, X.; Salla, J. M.; Mantecón, A.; Serra, A., Reduction of the shrinkage of thermosets by the cationic curing of mixtures of diglycidyl ether of bisphenol A and 6,6-dimethyl-(4,8-dioxaspiro[2.5]octane-5,7-dione). Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (23), 6869-6879.
    10. Wolffs, M.; Kade, M. J.; Hawker, C. J., An energy efficient and facile synthesis of high molecular weight polyesters using ketenes. Chemical Communications 2011, 47 (38), 10572-10574.
    11. Leibfarth, F. A.; Wolffs, M.; Campos, L. M.; Delany, K.; Treat, N.; Kade, M. J.; Moon, B.; Hawker, C. J., Low-temperature ketene formation in materials chemistry through molecular engineering. Chemical Science 2012, 3 (3), 766-771.
    12. Fillion, E.; Fishlock, D.; Wilsily, A.; Goll, J. M., Meldrum's acids as acylating agents in the catalytic intramolecular Friedel−Crafts reaction. The Journal of Organic Chemistry 2005, 70 (4), 1316-1327.
    13. Wu, C.-Y.; Hu, C.-C.; Lin, L.-K.; Lai, J.-Y.; Liu, Y.-L., Liberation of small molecules in polyimide membrane formation: An effect on gas separation properties. Journal of Membrane Science 2016, 499, 20-27.
    14. Cheawchan, S.; Uchida, S.; Sogawa, H.; Koyama, Y.; Takata, T., Thermotriggered catalyst-free modification of a glass surface with an orthogonal agent possessing nitrile N-oxide and masked ketene functions. Langmuir 2016, 32 (1), 309-15.
    15. Jankovic, N.; Muskinja, J.; Ratkovic, Z.; Bugarcic, Z.; Rankovic, B.; Kosanic, M.; Stefanovic, S., Solvent-free synthesis of novel vanillidene derivatives of Meldrum's acid: biological evaluation, DNA and BSA binding study. RSC Advances 2016, 6 (45), 39452-39459.
    16. Gopakumar, D. A.; Pasquini, D.; Henrique, M. A.; de Morais, L. C.; Grohens, Y.; Thomas, S., Meldrum’s acid modified cellulose nanofiber-based polyvinylidene fluoride microfiltration membrane for dye water rreatment and nanoparticle removal. ACS Sustainable Chemistry & Engineering 2017, 5 (2), 2026-2033.
    17. Meldrum, A. N., A β-lactonic acid from acetone and malonic acid. Journal of the Chemical Society, Transactions 1908, 93, 598–601.
    18. Davidson, D.; Bernhard, S. A., The structure of Meldrum's supposed β-lactonic acid. Journal of the American Chemical Society 1948, 70 (10), 3426 – 3428.
    19. Pihlaja, K.; Seilo, M., The kinetics and mechanisms of the uncatalyzed and acid-catalyzed decomposition reactions of meldrum's acid and its methyl derivatives. Acta Chemica Scandinavica 1968, 22, 3053-3062.
    20. McNab, H., Meldrum's acid. Chemical Society Reviews 1978, 7 (3), 345-358.

    21. Arnett, E. M.; John A. Harrelson, J., A spectacular example of the importance of rotational barriers: The ionization of Meldrum's Acid. Journal of the American Chemical Society 1987, 109 (3), 809-812.
    22. Nakamura, S.; Hirao, H.; Ohwada, T., Rationale for the acidity of meldrum's acid. Consistent relation of C−H acidities to the properties of localized reactive orbital. Journal of Organic Chemistry 2004, 69 (13), 4309-4316.
    23. Pihlaja, K.; Seilo, M., The acidity and feneral base-catalyzed hydrolysis of Meldrum's acid and its methyl derivatives. Acta Chemica Scandinavica 1969, 23, 3003-3010.
    24. Wu, J.; Iacono, S. T.; McCandless, G. T.; Smith, D. W.; Novak, B. M., Utilization of a Meldrum's acid towards functionalized fluoropolymers possessing dual reactivity for thermal crosslinking and post-polymerization modification. Chemical Communications 2015, 51 (44), 9220-9222.
    25. Chen, B.-C.; Lue, P., A convenient preparation of 5,5-dialkyl meldrum's acids. Organic Preparations and Procedures International 1992, 24 (2), 185-188.
    26. Wolffs, M.; Kade, M. J.; Hawker, C. J., An energy efficient and facile synthesis of high molecular weight polyesters using ketenes. Chemical Communications (Camb) 2011, 47 (38), 10572-4.
    27. Lin, L. K.; Hu, C. C.; Su, W. C.; Liu, Y. L., Thermosetting resins with high fractions of free volume and inherently low dielectric constants. Chemical Communications (Camb) 2015, 51 (64), 12760-12763.
    28. Leibfarth, F. A.; Schneider, Y.; Lynd, N. A.; Schultz, A.; Moon, B.; Kramer, E. J.; Bazan, G. C.; Hawker, C. J., Ketene functionalized polyethylene: control of cross-Link density and material properties. Journal of the American Chemical Society 2010, 132 (42), 14706–14709.
    29. Jung, H.; Leibfarth, F. A.; Woo, S.; Lee, S.; Kang, M.; Moon, B.; Hawker, C. J.; Bang, J., Efficient surface neutralization and enhanced substrate adhesion through ketene mediated crosslinking and functionalization. Advanced Functional Materials 2013, 23 (12), 1597-1602.
    30. Chou, Y.-K.; Chen, Y.; Lin, L.-K.; Liu, Y.-L., Thermosetting Resins Based on a Self-Crosslinkable Monomer/Polymer Possessing Meldrum's Acid Groups. Macromolecular Chemistry and Physics 2017, 218 (17), 1700147.
    31. Fillion, E.; Fishlock, D., Scandium triflate-catalyzed intramolecular Friedel–Crafts acylation with Meldrum's acids: insight into the mechanism. Tetrahedron 2009, 65 (33), 6682-6695.
    32. Chen, Y.; Lin, L. K.; Chiang, S. J.; Liu, Y. L., A Cocatalytic Effect between Meldrum's Acid and Benzoxazine Compounds in Preparation of High Performance Thermosetting Resins. Macromolecular Rapid Communications 2017, 38 (4).
    33. A. C. Poshkus; Herweh, J. E., A New Reaction between Cyclohexanecarbonyl Chloride and Phenyl Isocyanate. The Journal of Organic Chemistry 1965, 30 (7), 2466–2469.

    QR CODE