研究生: |
瞿紹任 Chu, Shao-Jen |
---|---|
論文名稱: |
磁致冷復熱器之性能提升設計 Designs for Improving the Performance of Active Magnetic Regenerator |
指導教授: |
許文震
Sheu, Wen-Jenn |
口試委員: |
李隆正
Lung-Cheng Lee 簡國祥 Kuo-Hsiang Chien |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | AMR 、磁致冷復熱器 、絕熱段 、磁熱材料 |
外文關鍵詞: | active magnetic regenerator, adiabatic segment, magnetocaloric material |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
關於磁致冷復熱器(AMR)的相關研究過去多未考量熱能在熱端與冷端之間直接經由金屬磁熱材料進行傳遞造成的效能下降,因此,本研究由阻斷材料中的熱能傳遞著手,藉由設置低熱傳導率的區域作為絕熱段並配置於磁熱材料之中,使熱能無法經由磁熱材料在冷、熱端之間傳遞,以此提升AMR之效能。同時,研究過程中改變絕熱段之長度、數量與位置,並在不同的週期、溫差等參數條件下進行測試,藉以了解性能改善之狀況以及各參數間的相互影響,使AMR的性能最佳化。研究以COMSOL Multiphysics模擬軟體進行,並簡化AMR之結構,以一維暫態模型進行模擬分析。模擬採用的磁致冷裝置為往復式AMR,磁熱材料為Gd平板,工作流體為水,磁場強度1 T。
研究分別在固定孔隙率和固定材料厚度的設置下進行,結果顯示,在各種參數條件下,絕熱段的設置皆可使AMR的性能提升,提升的幅度則與絕熱段本身的設計和參數條件有關。多數情況下,絕熱段長度越長、數量越多,AMR的性能提升幅度越大;而將絕熱段之位置設在冷端與復熱器中點的中間附近,通常會有較大的提升效果。另外,當AMR的週期較長、溫差較大時,絕熱段的提升效果較明顯;而AMR溫差越大,最佳操作週期則越長,並會受到材料片數(總表面積)的影響。固定孔隙率與固定材料厚度的結果相似,惟固定厚度下磁熱材料總質量隨材料片數增加而增加,因此冷凍能力與其提升量隨著片數變化的趨勢與固定孔隙率不同。研究結果並顯示,在固定厚度下,質量流率若配合材料總質量改變,使利用因數維持在1 ~ 1.6附近,則定溫差下AMR的冷凍能力最大。
Most of previous researches about active magnetic regenerators (AMR) didn’t pay much attention to the effects of conduction heat transfer between the hot end and the cold end through the magnetocaloric material in AMR on the efficiency of cooling. For an increase in efficiency, the work here investigates this point with an introduction of adiabatic segments inserted into the magnetocaloric material to prevent the heat conduction through it. The length, number and positon of adiabatic segments under various system parameters are analyzed numerically to improve the cooling performance of AMR. A simplified 1-D transient model of AMR is adopted and solved by COMSOL Multiphysics. The AMR model is a reciprocating type with Gd plates as magnetocaloric material and water as working fluid. The maximum magnetic field is 1 T.
The numerical simulation is done under the conditions of constant porosity and constant thickness of Gd plates. The results show that the adiabatic segments can improve the cooling performance of AMR. For most cases, longer and more segments lead to a better performance. In addition, the position of segments in the middle region between the cold end and the center of Gd plates usually provides a higher cooling power. Further, the adiabatic segments will be more effective for high temperature difference and long operating period. The parameters such as the temperature difference, the period and the number of Gd plates will interact with one another and have coupling effects on the AMR performance. The two conditions (constant porosity and constant thickness) have similar results except that the trend of the cooling power versus the number of Gd plates is different due to the total Gd mass of the latter one increasing with the number of Gd plates. Under the constant-thickness condition, a better AMR performance is achieved for the magnitude of utilization factor around 1-1.6 by adjusting the mass flow rate.
[1] K. A. Gschneidner, Jr. and V. K. Pecharsky, “Thirty years of near room temperature magnetic cooling: Where we are today and future prospects,” International Journal of Refrigeration, Vol. 31, pp. 945-961, 2008.
[2] V. K. Pecharsky and K. A. Gschneidner, Jr., “Giant Magnetocaloric Effect in Gd5(Si2Ge2),” Physical Review Letters, Vol. 78, pp. 4484-4497, 1997a.
[3] B. Yu, M. Liu, P. W. Egolf and A. Kitanovski, “A review of magnetic refrigerator and heat pump prototypes built before the year 2010,” International Journal of Refrigeration, Vol. 33, pp. 1029-1060, 2010.
[4] A. Rowe and A. Tura, “Experimental investigation of a three-material layered active magnetic regenerator,” International Journal of Refrigeration, Vol. 29, pp. 1286-1293, 2006.
[5] A. Rowe and A. Tura, “Active magnetic regenerator performance enhancement using passive magnetic materials,” Journal of Magnetism and Magnetic Materials, Vol. 320, pp. 1357–1363, 2008.
[6] A. Tura and A. Rowe, "Permanent magnet magnetic refrigerator design and experimental characterization," International Journal of Refrigeration, Vol. 34, pp. 628-639, 2011.
[7] K. Engelbrecht, D. Eriksen, C. R. H. Bahl, R. Bjørk, J. Geyti, J. A. Lozano, K. K. Nielsen, F. Saxild, A. Smith and N. Pryds, “Experimental results for a novel rotary active magnetic regenerator,” International Journal of Refrigeration, Vol. 35, pp. 1498-1505, 2012.
[8] K. Engelbrecht, J. Tušek, K. K. Nielsen, A. Kitanovski, C. R. H. Bahl and A. Poredoš, “Improved modelling of a parallel plate active magnetic regenerator,” Journal of Physics D: Applied Physics, Vol. 46, 2013.
[9] J. Tušek, A. Kitanovski, U. Tomc, C. Favero and A. Poredoš, “Experimental comparison of multi-layered La–Fe–Co–Si and single-layered Gd active magnetic regenerators for use in a room-temperature magnetic refrigerator,” International Journal of Refrigeration, Vol. 37, pp. 117-126, 2014.
[10] D. S. Arnold, A. Tura, A. Ruebsaat-Trott and A. Rowe, “Design improvements of a permanent magnet active magnetic refrigerator,” International Journal of Refrigeration, Vol. 37, pp. 99-105, 2014.
[11] C. Aprea, A. Greco, A. Maiorino, R. Mastrullo and A. Tura, “Initial experimental results from a rotary permanent magnet magnetic refrigerator,” International Journal of Refrigeration, 2014.
[12] V. K. Pecharsky, K. A. Gschneidner, Jr., A. O. Pecharsky and A. M. Tishin, “Thermodynamics of the magnetocaloric effect,” Physical Review B, Vol. 64, pp. 144406, 2001.
[13] B. F. Yu, Q. Gao, B. Zhang, X. Z. Meng and Z. Chen, "Review on research of room temperature magnetic refrigeration," International Journal of Refrigeration, Vol. 26, pp. 622-636, 2003.
[14] E. Brück, "Developments in magnetocaloric refrigeration," Journal of Physics D: Applied Physics, Vol. 38, pp. R381-R391, 2005.
[15] V. Provenzano, A. J. Shapiro and R. D. Shull, “Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron,” Nature, Vol. 429, pp. 853–857, 2004.
[16] K. A. Gschneidner, Jr., V. K. Pecharsky and A. O. Tsokol, "Recent developments in magnetocaloric materials," Reports on Progress in Physics, Vol. 68, pp. 1479-1539, 2005.
[17] F. X. Hu, B. G. Shen, J. R. Sun, Z. H. Cheng, G. H. Rao and X. X. Zhang, “Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6,” Applied Physics Letters, Vol. 78, pp. 3675-3677, 2001.
[18] J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore and O. Gutfleisch, "Giant magnetocaloric effect driven by structural transitions," Nature Materials, Vol. 11, pp. 620-626, 2012.
[19] 楊政瑜及蘇琨祥, “無刷電動機結構設計與特性分析,” 工程科技與教育學刊, 第五卷, 第425-445頁, 民國九十七年.
[20] K&J magnetics, Inc., “Halbach Arrays,” Available: http://www.kjmagnetics.com/blog.asp?p=halbach-arrays.
[21] T. F. Petersen, N. Pryds, A. Smith, J. Hattel, H. Schmidt and H. H. Knudsen, "Two-dimensional mathematical model of a reciprocating room-temperature Active Magnetic Regenerator," International Journal of Refrigeration, Vol. 31, pp. 432-443, 2008.
[22] 吳俊億, “磁制冷卻系統之性能模擬研究,” 碩士論文, 國立清華大學, 民國一百零二年.
[23] C. R. H. Bahl, T. F. Petersen, N. Pryds and A. Smith, "A versatile magnetic refrigeration test device," Review of Scientific Instruments, Vol. 79, pp. 093906, 2008.
[24] M. Nickolay and H. Martin, "Improved approximation for the Nusselt number for hydrodynamically developed laminar flow between parallel plates," International Journal of Heat and Mass Transfer, Vol. 45, pp. 3263-3266, 2002.
[25] R. A. Ackermann, Cryogenic Regenerative Heat Exchangers, Plenum Press, New York, 1997.