簡易檢索 / 詳目顯示

研究生: 劉錫輝
Shi-Hwei Liu
論文名稱: 建立高產量分泌重組蛋白的模式於嗜甲醇酵母菌
Process model for high-level secretory production of recombinant protein in Pichia pastoris
指導教授: 張大慈
Margaret Dah-Tsyr Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2005
畢業學年度: 94
語文別: 英文
論文頁數: 88
中文關鍵詞: 重組蛋白蛋白質分泌系統糖化酵素嗜甲醇酵母菌
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雖然嗜甲醇酵母菌 (Pichia pastoris) 已經發展成為廣泛使用的宿主微生物生產大量的重組蛋白,我們的研究發現欲將根瘤菌的糖化酵素 (glucoamylase) 分泌於嗜甲醇酵母菌中遭遇到很大的瓶頸。在此論文中,我們利用遺傳工程的方式設計一段改造過的前導序列 (modified signal peptide) 代替糖化酵素的前導序列,並增加此段前導序列替換後糖化酵素的基因數目,接著再共同表現一段SEC4基因,最後結合這些有利因子使糖化酵素的分泌表現提升了一百倍。SEC4基因掌控的蛋白質屬於Rab家族的GTPase,它能插入分泌的小泡中,為蛋白質分泌的過程中不可或缺的角色。為了更進一步了解SEC4在嗜甲醇酵母菌中的生理角色,我們在已經插入七個糖化酵素基因數目的嗜甲醇酵母菌中表現大量的定點突變蛋白SEC4S28N,並且也構築一組含不同的基因數目之野生型SEC4之選殖株。我們發現此定點突變會減低SEC4蛋白和GTP結合的親合力阻止分泌小泡傳送和融合至細胞膜,進而抑制細胞生長和糖化酵素的分泌表現。我們的研究也顯示,經由酒精氧化酶的啟動子 (AOX1 promoter) 啟動大量正常SEC4 基因表現會增加糖化酵素在高濃度的細胞中之分泌量,但卻會抑制酵母菌細胞的生長,並隨著基因量的增加而更形嚴重。有趣的是,表現單一的SEC4 基因會在較早的培養時期造成細胞生長減慢,但卻會維持較高的未水解SEC4 蛋白至培養的後期,顯示在嗜甲醇酵母菌中維持定量的SEC4 蛋白並不會影響到細胞的生長。根據此觀點,我們將表現SEC4 蛋白的酒精氧化酶啟動子置換成甘油醛-3-磷酸去氫酶的啟動子 (GAP promoter) 發現糖化酵素的分泌仍能提升,但卻不會影響細胞的生長。綜合而言,SEC4 基因及SEC4 蛋白劑量能調節嗜甲醇酵母菌的生長和重組蛋白的胞外分泌表現。


    The methylotrophic yeast Pichia pastoris has been developed as a widely used host organism for high-level production of recombinant protein. However, we found that the secretion of Rhizopus oryzae glucoamylase (GA) encountered certain bottleneck in P. pastoris. In this study, R. oryzae GA was genetically engineered with a modified signal peptide (MSP), increased copy number of the gene, and coexpression of SEC4, a gene encoding a Rab protein associated with secretory vesicles, and it is to achieve a secretion level up to 100-fold in P. pastoris. Subsequently, to elucidate the physiological role of SEC4, a dominant-negative mutant of SEC4, SEC4S28N, was overexpressed under the control of alchohol oxidase 1 (AOX1) promoter in P. pastoris strain MSPGA-7 as well as a set of host cells harboring multi-copy of wild type SEC4. We found that SEC4S28N mutation in the key guanine nucleotide binding domain reduced guanine nucleotide binding affinity, hence it blocked the transport of vesicles required for targeting and fusion to the plasma membrane. The inhibitory levels of cell growth and GA secretion were correlated with the dosage of SEC4S28N gene. In addition, overexpression of SEC4 driven by AOX1 promoter in MSPGA-7 improved the secretory production of GA, but demonstrated a delay of cell growth by increased gene dosage of SEC4. Interestingly, a limited level of Sec4p did not disturb the cell growth. The expression of only one copy of SEC4 resulted in delay of cell growth at an early stage, while still maintained high level Sec4p after long-term incubation. Accordingly, as glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter was used to substitute AOX1 promoter to drive the SEC4 expression, enhanced GA secretion but no inhibition of cell growth were achieved. Taken together, our results demonstrate that SEC4 is substantial for regulating cell growth and heterologous protein secretion in P. pastoris.

    Abstract in Chinese……………………………………………………………………..…...1 Abstract…..………………………...………………………………………………………... 3 Abbreviations……………………..…………………………..………………….…...……...5 Chapter 1 Background……………………………………………………………....……....6 1-1. The methylotrophic yeast Pichia pastoris...…………………………….…….6 1-2. The P. pastoris expression system………………………………..…………...7 1-3. Methanol utilization phenotypes…………………………………………........8 1-4. Post-translational secretory pathway of P. pastoris…………………………...8 Chapter 2 Improved Secretory Production of Glucoamylase in Pichia pastoris by Combination of Genetic Manipulations……………………………………11 2-1. Introduction……………………………………………………….……….....11 2-2. Materials and methods……………………………………………….…..… ..14 2-2-1. Strains, vectors and reagents……………………………………………… ....14 2-2-2. Construction of recombinant plasmids encoding glucoamylase……………..14 2-2-3. Transformation of P. pastoris……………………………………………… ..15 2-2-4. Identification of P. pastoris transformants containing multiple copy number of MSPGA genes…………………………………………………….16 2-2-5. Isolation of genomic DNA…………………………………………….…… ..16 2-2-6. Southern blotting……………………………………………………………..17 2-2-7. Expression of GA in P. pastoris……………………………………………...18 2-2-8. SDS–PAGE and Western blotting…………………………………….……...19 2-2-9. GA activity assay……………………………………………………...…… ..19 2-2-10. Integration of SEC4 in each MSPGA/P. pastoris transformant………..….....20 2-2-11. Purification of recombinant GA……………………………………...……....20 2-3. Results……………………………………………………………...………...22 2-3-1. Generation of recombinant P. pastoris containing a single copy insert of WTSPGA and MSPGA……………………………………………...22 2-3-2. Analysis of GA secretion in WTSPGA-1 and MSPGA-1…………..…….....23 2-3-3. Isolation of recombinant P. pastoris with multi-copy MSPGA gene…….…..23 2-3-4. Enhancement of GA secretion by overexpression of SEC4 in each MSPGA/P. pastoris transformant…………………………………………….25 2-4. Discussion……………………………………………………………..…… ..26 Chapter 3 Molecular Genetic Manipulation of Pichia pastoris SEC4 Governs Cell Growth and Glucoamylase Secretion……………………………….…....36 3-1. Introduction……………………………...…………………………………...36 3-2. Materials and methods……………………………………………………….39 3-2-1. Strains, vectors and reagents…………………………………………………39 3-2-2. Construction of a dominant-negative mutant of SEC4 and a set of multi-copy wild type SEC4 expression cassette in P. pastoris MSPGA-7………………………………………………………..39 3-2-3. Southern blotting……………………………………………………………..41 3-2-4. Overexpression of wild type and mutant SEC4 in MSPGA-7 on culture plates……………………………..…………………………………..42 3-2-5. Growth conditions and preparation of recombinant yeast cells……………...42 3-2-6. Identification of recombinant Sec4p………………………………………....43 3-2-7. Analysis of glucoamylase (GA) secretion and intracellular GA…….……….43 3-3. Results……………………………………………………………………......45 3-3-1. Construction of SEC4S28N in P. pastoris strain MSPGA-7…………………...45 3-3-2. Growth effects of SEC4S28N overexpression in P. pastoris MSPGA-7…….....46 3-3-3. The delay of growth and overexpression of Sec4p parallel copy number of SEC4 in MSPGA-7…………………………………………………………...48 3-3-4. Effects on GA secretion by overexpression of SEC4S28N and a set of multi-copy of SEC4 in P. pastoris MSPGA-7……………………….……….49 3-3-5. Analysis of intracellular GA in P. pastoris transformants……………………50 3-3-6. Analysis of GAP promoter-drived SEC4 on GA secretion in MSPGA-7……51 3-4. Discussion……………………………………………………………………52 Chapter 4 Conclusion and Discussion……...…………………………………….………..69 References…………………………………………………………………………….……..72 Appendix………………………………………………………………………...…………..82 List of Tables Table 1 Determination of copy number of MSPGA inserts in recombinant P. pastoris…… 34 Table 2 Comparison of GA production in P. pastoris transformants………………….…… 35 Table 3 Summary of cell growth and GA production in P. pastoris transformants…...…… 68 List of Figures Figure 1. The diagrams of WTSPGA and MSPGA…………………………………...……...29 Figure 2. Determination of copy number in P. pastoris transformants harboring WTSPGA and MSPGA inserts…………………………………………………………………30 Figure 3. Comparison of GA secretion by WTSPGA-1 and MSPGA-1…………………… ..31 Figure 4. Enhancement of GA secretion in P. pastoris transformants containing different copy number of MSPGA inserts……………………………………………………32 Figure 5. Overexpression of SEC4 improved secretory production of GA…………...……...33 Figure 6. Determination of copy number of SEC4 and SEC4S28N inserts in P. pastoris MSPGA-7……………………………………………………………....56 Figure 7. Effects on growth of different P. pastoris transformants upon overexpression of SEC4 and SEC4S28N…………………………………………...57 Figure 8. Time-dependent growth of P. pastoris transformants were assayed………..……...58 Figure 9. Western blotting analysis of mutant and wild type Sec4p………………….……...59 Figure 10. Comparison of Sec4p in each clone cultured in BMM for 24 h and 120 h………60 Figure 11. Growth effects on overexpression of a set of multi-copy SEC4 in P. pastoris MSPGA-7……………….…………………………………………....61 Figure 12. Time-dependent growth of P. pastoris transformants were assayed……………...62 Figure 13. The amounts of intrcellular Sec4p in P. pastoris transformants were detected by Western blotting……………………………………………………..63 Figure 14. Effect of overexpression of mutant and wild type SEC4 on GA secretion in P. pastoris MSPGA-7………………………………………………………….64 Figure 15. Quantitative analysis of intracellular GA by Western blotting…………………...65 Figure 16. Time-dependent production of intracellular GA in P. pastoris transformants containing a set of different copy number of SEC4………………66 Figure 17. SDS-PAGE analysis of GA secretion in P. pastoris transformants……………….67

    [1] J. L. Cereghino and J. M. Cregg, Heterologous protein expression in the methylotrophic yeast Pichia pastoris, FEMS Microbiol. Rev. 24 (2000) 45-66.
    [2] K. N. Faber, W. Harder, G. Ab and M. Veenhuis, Review: methylotrophic yeasts as factories for the production of foreign proteins, Yeast 11 (1995) 1331-44.
    [3] C. P. Kurtzman and C. J. Robnett, Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences, Antonie Van Leeuwenhoek 73 (1998) 331-71.
    [4] G. Gellissen, Heterologous protein production in methylotrophic yeasts, Appl. Microbiol. Biotechnol. 54 (2000) 741-50.
    [5] J. F. Tschopp and J. M. Cregg, Heterologous gene expression in methylotrophic yeast, Biotechnology 18 (1991) 305-22.
    [6] G. P. Cereghino, J. L. Cereghino, C. Ilgen and J. M. Cregg, Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris, Curr. Opin. Biotechnol. 13 (2002) 329-32.
    [7] S. R. Shepard, C. Stone, S. Cook, A. Bouvier, G. Boyd, G. Weatherly, D. Lydiard and J. Schrimsher, Recovery of intracellular recombinant proteins from the yeast Pichia pastoris by cell permeabilization, J. Biotechnol. 99 (2002) 149-60.
    [8] S. A. Rosenfeld, Use of Pichia pastoris for expression of recombinant proteins, Methods Enzymol. 306 (1999) 154-69.
    [9] H. Hohenblum, B. Gasser, M. Maurer, N. Borth and D. Mattanovich, Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris, Biotechnol. Bioeng.85 (2004) 367-75.
    [10] R. Slibinskas, D. Samuel, A. Gedvilaite, J. Staniulis and K. Sasnauskas, Synthesis of the measles virus nucleoprotein in yeast Pichia pastoris and Saccharomyces cerevisiae, J. Biotechnol. 107 (2004) 115-24.
    [11] H. Aoki, M. Nazmul Ahsan and S. Watabe, Heterologous expression in Pichia pastoris and single-step purification of a cysteine proteinase from northern shrimp, Protein Expr. Purif. 31 (2003) 213-21.
    [12] J. McKinney, P. M. Knappskog, J. Pereira, T. Ekern, K. Toska, B. B. Kuitert, D. Levine, A. M. Gronenborn, A. Martinez and J. Haavik, Expression and purification of human tryptophan hydroxylase from Escherichia coli and Pichia pastoris, Protein Expr. Purif. 33 (2004) 185-94.
    [13] M. Paramasivam, K. Saravanan, K. Uma, S. Sharma, T. P. Singh and A. Srinivasan, Expression, purification, and characterization of equine lactoferrin in Pichia pastoris, Protein Expr. Purif. 26 (2002) 28-34.
    [14] L. Peng, X. Zhong, J. Ou, S. Zheng, J. Liao, L. Wang and A. Xu, High-level secretory production of recombinant bovine enterokinase light chain by Pichia pastoris, J. Biotechnol. 108 (2004) 185-92.
    [15] J. M. Cregg, J. L. Cereghino, J. Shi and D. R. Higgins, Recombinant protein expression in Pichia pastoris, Mol. Biotechnol. 16 (2000) 23-52.
    [16] B. J. Bevis, A. T. Hammond, C. A. Reinke and B. S. Glick, De novo formation of transitional ER sites and Golgi structures in Pichia pastoris, Nat. Cell Biol. 4 (2002) 750-6.
    [17] S. Mogelsvang, N. Gomez-Ospina, J. Soderholm, B. S. Glick and L. A. Staehelin, Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris, Mol. Biol. Cell 14 (2003) 2277-91.
    [18] D. Preuss, J. Mulholland, A. Franzusoff, N. Segev and D. Botstein, Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy, Mol. Biol. Cell 3 (1992) 789-803.
    [19] W. E. Payne, C. A. Kaiser, B. J. Bevis, J. Soderholm, D. Fu, I. B. Sears and B. S. Glick, Isolation of Pichia pastoris genes involved in ER-to-Golgi transport, Yeast 16 (2000) 979-93.
    [20] K. Sreekrishna, J. F. Tschopp, G. P. Thill, R. A. Brierley and K. A. Barr, Expression of human serum albumin in Pichia pastoris, U. S. patent No. 5,707,828 (1998)
    [21] K. Kobayashi, S. Kuwae, T. Ohya, T. Ohda, M. Ohyama, H. Ohi, K. Tomomitsu and O. T., High-level expression of recombinant human serum albumin from the methylotrophic yeast Pichia pastoris with minimal protease production and activation, J. Biosci. Bioeng. 89 (2000) 55-61.
    [22] M. W. Werten, T. J. van den Bosch, R. D. Wind, H. Mooibroek and F. A. de Wolf, High-yield secretion of recombinant gelatins by Pichia pastoris, Yeast 15 (1999) 1087-96.
    [23] N. S. Outchkourov, W. J. Stiekema and M. A. Jongsma, Optimization of the expression of equistatin in Pichia pastoris, Protein Expr. Purif. 24 (2002) 18-24.
    [24] A. Vassileva, D. A. Chugh, S. Swaminathan and N. Khanna, Expression of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris using the GAP promoter, J. Biotechnol. 88 (2001) 21-35.
    [25] A. Vassileva, D. A. Chugh, S. Swaminathan and N. Khanna, Effect of copy number on the expression levels of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris, Protein Expr. Purif. 21 (2001) 71-80.
    [26] I. B. Sears, J. O'Connor, O. W. Rossanese and B. S. Glick, A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris, Yeast 14 (1998) 783-90.
    [27] D. R. Cavener and S. C. Ray, Eukaryotic start and stop translation sites, Nucleic Acids Res. 19 (1991) 3185-92.
    [28] L. Briand, V. Perez, J. C. Huet, E. Danty, C. Masson and J. C. Pernollet, Optimization of the production of a honeybee odorant-binding protein by Pichia pastoris, Protein Expr. Purif. 15 (1999) 362-9.
    [29] Z. I. Crawford K., Bishop R. J., Innis M. A., Pichia secretory leader for protein expression, U. S. patent No. 6, 107, 057 (2000)
    [30] R. J. Raemaekers, L. de Muro, J. A. Gatehouse and A. P. Fordham-Skelton, Functional phytohemagglutinin (PHA) and Galanthus nivalis agglutinin (GNA) expressed in Pichia pastoris correct N-terminal processing and secretion of heterologous proteins expressed using the PHA-E signal peptide, Eur. J. Biochem. 265 (1999) 394-403.
    [31] N. Koganesawa, T. Aizawa, K. Masaki, A. Matsuura, T. Nimori, H. Bando, K. Kawano and K. Nitta, Construction of an expression system of insect lysozyme lacking thermal stability: the effect of selection of signal sequence on level of expression in the Pichia pastoris expression system, Protein Eng. 14 (2001) 705-10.
    [32] J. M. Kowalski, R. N. Parekh, J. Mao and K. D. Wittrup, Protein folding stability can determine the efficiency of escape from endoplasmic reticulum quality control, J. Biol. Chem. 273 (1998) 19453-8.
    [33] D. Rossini, D. Porro, L. Brambilla, M. Venturini, B. M. Ranzi, M. Vanoni and L. Alberghina, In Saccharomyces cerevisiae, protein secretion into the growth medium depends on environmental factors, Yeast 9 (1993) 77-84.
    [34] P. M. Coutinho and P. J. Reilly, Glucoamylase structural, functional, and evolutionary relationships, Proteins 29 (1997) 334-47.
    [35] Y. Sakai, M. Akiyama, H. Kondoh, Y. Shibano and N. Kato, High-level secretion of fungal glucoamylase using the Candida boidinii gene expression system, Biochim. Biophys. Acta. 1308 (1996) 81-7.
    [36] K. Sreekrishna, R. G. Brankamp, K. E. Kropp, D. T. Blankenship, J. T. Tsay, P. L. Smith, J. D. Wierschke, A. Subramaniam and L. A. Birkenberger, Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris, Gene 190 (1997) 55-62.
    [37] J. H. Toikkanen, K. J. Miller, H. Soderlund, J. Jantti and S. Keranen, The beta subunit of the Sec61p endoplasmic reticulum translocon interacts with the exocyst complex in Saccharomyces cerevisiae, J. Biol. Chem. 278 (2003) 20946-53.
    [38] A. Salminen and P. J. Novick, A ras-like protein is required for a post-Golgi event in yeast secretion, Cell 49 (1987) 527-38.
    [39] Y. Jiang, G. Rossi and S. Ferro-Novick, Bet2p and Mad2p are components of a prenyltransferase that adds geranylgeranyl onto Ypt1p and Sec4p, Nature 366 (1993) 84-6.
    [40] W. Guo, D. Roth, C. Walch-Solimena and P. Novick, The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis, Embo J. 18 (1999) 1071-80.
    [41] J. H. Lipschutz and K. E. Mostov, Exocytosis: the many masters of the exocyst, Curr. Biol. 12 (2002) R212-4.
    [42] T. T. Huynh, R. Vad, T. Kristensen and T. B. Oyen, The genes of two G-proteins involved in protein transport in Pichia pastoris, Biochem. Biophys. Res. Commun. 280 (2001) 454-9.
    [43] G. von Heijne, Signal sequences. The limits of variation, J. Mol. Biol. 184 (1985) 99-105.
    [44] C. Oka, M. Tanaka, M. Muraki, K. Harata, K. Suzuki and Y. Jigami, Human lysozyme secretion increased by alpha-factor pro-sequence in Pichia pastoris, Biosci. Biotechnol. Biochem. 63 (1999) 1977-83.
    [45] T. Kjeldsen, A. S. Andersen, M. Hach, I. Diers, J. Nikolajsen and J. Markussen, alpha-Factor pro-peptide N-linked oligosaccharides facilitate secretion of the insulin precursor in Saccharomyces cerevisiae, Biotechnol. Appl. Biochem. 27 ( Pt 2) (1998) 109-15.
    [46] T. Lazar, M. Gotte and D. Gallwitz, Vesicular transport: how many Ypt/Rab-GTPases make a eukaryotic cell?, Trends Biochem. Sci. 22 (1997) 468-72.
    [47] S. Macauley-Patrick, M. L. Fazenda, B. McNeil and L. M. Harvey, Heterologous protein production using the Pichia pastoris expression system, Yeast 22 (2005) 249-70.
    [48] J. M. Cregg, K. R. Madden, K. J. Barringer, G. P. Thill and C. A. Stillman, Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris, Mol. Cell Biol. 9 (1989) 1316-23.
    [49] K. Kobayashi, S. Kuwae, T. Ohya, T. Ohda, M. Ohyama, H. Ohi, K. Tomomitsu and O. T., High-level expression of recombinant human serum albumin from the methylotrophic yeast Pichia pastoris with minimal protease production and activation, J. Biosci. Bioeng. 89 (2000) 55-61.
    [50] J. S. Bonifacino and B. S. Glick, The mechanisms of vesicle budding and fusion, Cell 116 (2004) 153-66.
    [51] P. Novick and M. Zerial, The diversity of Rab proteins in vesicle transport, Curr. Opin. Cell Biol. 9 (1997) 496-504.
    [52] S. R. Pfeffer, Rab GTPases: specifying and deciphering organelle identity and function, Trends Cell Biol. 11 (2001) 487-91.
    [53] S. H. Liu, W. I. Chou, C. C. Sheu and M. D. Chang, Improved secretory production of glucoamylase in Pichia pastoris by combination of genetic manipulations, Biochem. Biophys. Res. Commun. 326 (2005) 817-24.
    [54] J. H. Toikkanen, L. Sundqvist and S. Keranen, Kluyveromyces lactis SSO1 and SEB1 genes are functional in Saccharomyces cerevisiae and enhance production of secreted proteins when overexpressed, Yeast 21 (2004) 1045-55.
    [55] N. C. Walworth, B. Goud, A. K. Kabcenell and P. J. Novick, Mutational analysis of SEC4 suggests a cyclical mechanism for the regulation of vesicular traffic, EMBO J. 8 (1989) 1685-93.
    [56] Y. Mao, V. F. Kalb and B. Wong, Overexpression of a dominant-negative allele of SEC4 inhibits growth and protein secretion in Candida albicans, J. Bacteriol. 181 (1999) 7235-42.
    [57] P. Siriputthaiwan, A. Jauneau, C. Herbert, D. Garcin and B. Dumas, Functional analysis of CLPT1, a Rab/GTPase required for protein secretion and pathogenesis in the plant fungal pathogen Colletotrichum lindemuthianum, J. Cell Sci. 118 (2005) 323-9.
    [58] C. Walch-Solimena, R. N. Collins and P. J. Novick, Sec2p mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles, J. Cell Biol. 137 (1997) 1495-509.
    [59] B. Govindan, R. Bowser and P. Novick, The role of Myo2, a yeast class V myosin, in vesicular transport, J. Cell. Biol. 128 (1995) 1055-68.
    [60] D. W. Pruyne, D. H. Schott and A. Bretscher, Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast, J. Cell Biol. 143 (1998) 1931-45.
    [61] D. Schott, J. Ho, D. Pruyne and A. Bretscher, The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting, J. Cell Biol. 147 (1999) 791-808.
    [62] T. S. Karpova, S. L. Reck-Peterson, N. B. Elkind, M. S. Mooseker, P. J. Novick and J. A. Cooper, Role of actin and Myo2p in polarized secretion and growth of Saccharomyces cerevisiae, Mol. Biol. Cell 11 (2000) 1727-37.
    [63] M. C. Loewen, X. Liu, P. L. Davies and A. J. Daugulis, Biosynthetic production of type II fish antifreeze protein: fermentation by Pichia pastoris, Appl. Microbiol. Biotechnol. 48 (1997) 480-6.
    [64] R. A. Brierley, C. Bussineau, R. Kosson, A. Melton and R. S. Siegel, Fermentation development of recombinant Pichia pastoris expressing the heterologous gene: bovine lysozyme, Ann. N. Y. Acad. Sci. 589 (1990) 350-62.
    [65] H. R. Waterham, M. E. Digan, P. J. Koutz, S. V. Lair and J. M. Cregg, Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter, Gene 186 (1997) 37-44.
    [66] L. Ruohonen, J. Toikkanen, V. Tieaho, M. Outola, H. Soderlund and S. Keranen, Enhancement of protein secretion in Saccharomyces cerevisiae by overproduction of Sso protein, a late-acting component of the secretory machinery, Yeast 13 (1997) 337-51.
    [67] W. Guo and P. Novick, The exocyst meets the translocon: a regulatory circuit for secretion and protein synthesis?, Trends Cell Biol. 14 (2004) 61-3.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE