研究生: |
陳瑞延 Jui-Yen Chen |
---|---|
論文名稱: |
利用非線性的隨機模型來建立並比較正常與癌症細胞中蛋白質的交互作用網路 Construction and Comparison of Protein-Protein Interaction Networks between Normal and Cancer Cells via Nonlinear Stochastic Model |
指導教授: |
陳博現
Bor-Sen Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 41 |
中文關鍵詞: | 蛋白質交互作用 、隨機模型 、正常細胞與癌症細胞的比較 |
外文關鍵詞: | protein-protein interactions, stochastic model, comparison between normal and cancer cells |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
癌症的產生是由於前致癌基因(proto-oncogenes)或抑癌基因(tumor suppressor genes)的基因改變,造成一連串下游的蛋白質訊息傳遞發生改辨或是喪失抑制癌症發生的功能。因此檢是癌症細胞內的蛋白質作用,並將其與正常細胞做比較,能夠幫助我們更了解正常細胞是如何轉化為癌症細胞。在這篇研究中,我們以HeLa癌症細胞株(HeLa cancer cell line)的表現曲線(expression profiles)為根據,並利用一個非線性的隨機模型來描述癌症細胞中蛋白質和蛋白質複合物(protein complexes)的動態作用,進一步建立出癌症細胞中的蛋白質交互作用網路。
再來,我們提供一個有系統的方法來建立並比較正常細胞與癌症細胞中的蛋白質交互作用網路。透過我們的方法並選取那些在前致癌基因和抑癌基因中扮演重要角色的蛋白質作為我們的目標蛋白質(target protein),能夠得到正常細胞與癌症細胞中不同的蛋白質反應。這些不同的蛋白質反應提供了一些癌症產生的線索,同時我們也試著去尋找一些文獻證據來印證利用我們的方法所得到的結果。最後,我們也試著利用我們的方法建立在正常細胞與癌症細胞中MAPK訊息傳遞路徑的蛋白質交互作用網路。我們所提出的方法在比較正常細胞與癌症細胞中蛋白質交互作用上非常有用,而且也可能在未來的癌症藥物設計上提供貢獻。
Cancer is known to occur due to the genetic alternations of proto-oncogenes or tumor suppressor genes to alter a series of downstream signal transduction pathway in the molecular level or loss function in inhibiting the tumor occurrence. Therefore, inspecting the interactive behaviors of proteins in cancer cells and comparing them with those in normal cells will help us understand more about how a normal cell transforms to a cancer cell. In this study, we develop a nonlinear stochastic model to interpret the dynamic interactions among proteins and protein complexes in cancer cells based on the expression profiles of the cancer cell lines (HeLa) to depict a protein-protein interaction network of cancer cells. Furthermore, we provide a systematic method for construction and comparison of protein-protein interactions between normal and cancer cells. By choosing the target proteins of the protein-protein interaction network known to play important roles in proto-oncogenes and tumor suppressor genes such as Fos protein, Rb1 protein, Tp53 protein, etc. via our method, differential interactions between normal and cancer cells could be shown. These differences will provide a clue to the formations of tumors, and then we find some literature evidences to validate these results. Finally, protein-protein interaction networks of the MAPK signal transduction pathways between normal and cancer cells are also depicted via the proposed method. The proposed method is useful for enhancement and comparison of protein-protein interactions between normal and cancer cells, and may be helpful in the drug design in the future.
Bork, P., Jensen, L.J., von Mering, C., Ramani, A.K., Lee, I., Marcotte, E.M. (2004) Protein interaction networks from yeast to human. Curr. Opin. Struct. Biol., 14, 292-299.
Cahill, D.P., Kinzler, K.W., Vogelstein, B., Lengauer, C. (1999) Genetic instability and darwinian selection in tumours. Trends Cell Biol., 9, M57-60.
Chen, H.C., Lee, H.C., Lin, T.Y., Li, W.H., Chen, B.S. (2004) Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics, 20, 1914-1927.
Davidson, E.H., McClay, D.R., Hood, L. (2003) Regulatory gene networks and the properties of the developmental process. Proc. Natl. Acad. Sci., 100, 1475-1480.
Dyson, N. (1998) The regulation of E2F by pRB-family proteins. Genes Dev., 12, 2245-2262.
Faires, J.D. and Burden R. (1998) Numerical Methods, 2nd edition, Brooks/Cole Publishing Company, pp. 87-91.
Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., Superti-Furga, G. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415, 141-147.
Hanahan, D., Weinberg, R.A. (2000) The hallmarks of cancer. Cell, 100, 57-70.
Hasty, J., McMillen, D., Collins, J.J. (2002) Engineered gene circuits. Nature, 420, 224-230.
Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., Yang, L., Wolting, C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A.R., Sassi, H., Nielsen, P.A., Rasmussen, K.J., Andersen, J.R., Johansen, L.E., Hansen, L.H., Jespersen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Sorensen, B.D., Matthiesen, J., Hendrickson, R.C., Gleeson, F., Pawson, T., Moran, M.F., Durocher, D., Mann, M., Hogue, C.W., Figeys, D., Tyers, M. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature, 415, 180-183.
Hood, L. (2003) Systems biology: integrating technology, biology, and computation. Mech Ageing Dev., 124, 9-16.
Hornberg, J.J., Bruggeman, F.J., Westerhoff, H.V., Lankelma, J. (2006) Cancer: a Systems Biology disease. Biosystems, 83, 81-90.
Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci., 98, 4569-4574.
Iwabuchi, K., Bartel, P.L., Li, B., Marraccino, R., Fields, S. (1994) Two cellular proteins that bind to wild-type but not mutant p53. Proc. Natl. Acad. Sci. U S A, 91, 6098-6102.
Iwabuchi, K., Li, B., Massa, H.F., Trask, B.J., Date, T., Fields, S. (1998) Stimulation of p53-mediated transcriptional activation by the p53-binding proteins, 53BP1 and 53BP2. J. Biol. Chem., 273, 26061-26068.
Johansson, R. (1993) System modeling and identification, Prentice-Hall, pp. 113-119.
Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H. (2005) System Biology in Practice: Concepts, Implementation and Application, Wiley-VCH, Berlin.
Lin, L.H., Lee, H.C., Li, W.H., Chen, B.S. (2005) Dynamic modeling of cis-regulatory circuits and gene expression prediction via cross-gene identification. BMC Bioinformatics, 6:258.
Loden, M., Stighall, M., Nielsen, N.H., Roos, G., Emdin, S.O., Ostlund, H., Landberg, G. (2002) The cyclin D1 high and cyclin E high subgroups of breast cancer: separate pathways in tumorogenesis based on pattern of genetic aberrations and inactivation of the pRB node. Oncogene, 21, 4680-4690.
Orton, R.J., Sturm, O.E., Vyshemirsky, V., Calder, M., Gilbert, D.R., Kolch, W. (2005) Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem. J., 392, 249-261.
Patwardhan, A.J., Strittmatter, E.F., Camp, D.G. 2nd, Smith, R.D., Pallavicini, M.G. (2005) Comparison of normal and breast cancer cell lines using proteome, genome, and interactome data. J. Proteome Res., 4, 1952-1960.
Radisavljevic, Z., (2004) Inactivated tumor suppressor Rb by nitric oxide promotes mitosis in human breast cancer cells. J. Cell Biochem., 92, 1-5.
Rual, J,F,, Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G.F., Gibbons, F.D., Dreze, M., Ayivi-Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Goldberg, D.S., Zhang, L.V., Wong, S.L., Franklin, G., Li, S., Albala, J.S., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski, R.S., Vandenhaute, J., Zoghbi, H.Y., Smolyar, A., Bosak, S., Sequerra, R., Doucette-Stamm, L., Cusick, M.E., Hill, D.E., Roth, F.P., Vidal, M. (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature, 437, 1173-1178.
Sherr, C.J., McCormick, F. (2002) The RB and p53 pathways in cancer. Cancer Cell, 2, 103-112.
Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F.H., Goehler, H., Stroedicke, M., Zenkner, M., Schoenherr, A., Koeppen, S., Timm, J., Mintzlaff, S., Abraham, C., Bock, N., Kietzmann, S., Goedde, A., Toksoz, E., Droege, A., Krobitsch, S., Korn, B., Birchmeier, W., Lehrach, H., Wanker, E.E. (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell, 122, 957-968.
Tegner, J., Yeung, M.K., Hasty, J., Collins, J.J. (2003) Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc. Natl. Acad. Sci., 100, 5944-5949.
Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D,, Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S., Rothberg, J.M. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 403, 623-627.
Whitfield, M. L., Sherlock, G., Saldanha, A., Murray, J. I., Ball, C. A., Alezander, K. E., Matese, J. C., Perou, C. M., Hurt, M. M., Brown, P. O., Botstein, D. (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell, 13, 1977–2000.