研究生: |
吳幸珊 Wu, Sing-Shan |
---|---|
論文名稱: |
創傷弧菌中 VieA 相似的 EAL 區域蛋白表達基因 vva0328 之功能分析 Characterization of vva0328, a VieA-like EAL domain protein encoding gene in Vibrio vulnificus YJ016 |
指導教授: |
張晃猷
Chang, Hwan-You |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 創傷弧菌 、環狀雙鳥苷酸 、VieSAB 三分子調控系統 、EAL 功能區域 |
外文關鍵詞: | Vibrio vulnificus, cyclic-di-GMP, VieSAB system, EAL domain |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在創傷弧菌的小染色體上有一套編號為 vva0326-9 的基因群,能產生與霍亂弧菌 VieSAB 三分子調控系統序列相似的產物。其中 vva0328 會表現含有 EAL 功能區域的蛋白質,而 vva0326 則表達含GGDEF 功能區域的蛋白質。由之前的研究發現具 GGDEF 功能區域的蛋白及 EAL 功能區域的蛋白分別具有雙鳥苷酸環化酶和磷酸雙酯分解酶的活性,可調控環狀雙鳥苷酸含量。本實驗室過去研究曾發現 vva0328 缺損的突變株具有較低的細胞毒殺能力及較慢的泳動力。為進一步了解此基因的功能,本研究先構築大量表現 VVA0328 的重組蛋白,並測試其酵素活性,結果並無法偵測到 VVA0328 具有磷酸雙酯分解酶活性。本研究中也構築了 vva0328 突變株的單套互補株,並發現在各種生物表現型試驗中,能恢復突變株原本較低的細胞毒殺能力及泳動性。而利用反轉錄 PCR 的方法也發現在 vva0328 缺損株中,創傷弧菌的主要致病毒素 rtxA 與蛋白酶基因 vvp 都會降低表現活性。但是在溶血性、捕鐵載體產生量以及蛋白酶活性試驗中,vva0328 突變株與野生株並沒有顯著的差異。根據本研究的結果,可以推測 VVA0328 很可能藉由調控 rtxA 及vvp 的基因表現來影響創傷弧菌的致病力。
參考文獻
1. Chiang, S.R. and Y.C. Chuang, Vibrio vulnificus infection: clinical manifestations, pathogenesis, and antimicrobial therapy. J Microbiol Immunol Infect, 2003. 36(2): p. 81-8.
2. Gulig, P.A., K.L. Bourdage, and A.M. Starks, Molecular Pathogenesis of Vibrio vulnificus. J Microbiol, 2005. 43 Spec No: p. 118-31.
3. Jones, M.K. and J.D. Oliver, Vibrio vulnificus: disease and pathogenesis. Infect Immun, 2009. 77(5): p. 1723-33.
4. Chen, C.Y., et al., Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res, 2003. 13(12): p. 2577-87.
5. Lally, E.T., et al., The interaction between RTX toxins and target cells. Trends Microbiol, 1999. 7(9): p. 356-61.
6. Welch, R.A., RTX toxin structure and function: a story of numerous anomalies and few analogies in toxin biology. Curr Top Microbiol Immunol, 2001. 257: p. 85-111.
7. Chatterjee, R., S. Nag, and K. Chaudhuri, Identification of a new RTX-like gene cluster in Vibrio cholerae. FEMS Microbiol Lett, 2008. 284(2): p. 165-71.
8. Lee, J.H., et al., Identification and characterization of the Vibrio vulnificus rtxA essential for cytotoxicity in vitro and virulence in mice. J Microbiol, 2007. 45(2): p. 146-52.
9. Lee, B.C., S.H. Choi, and T.S. Kim, Vibrio vulnificus RTX toxin plays an important role in the apoptotic death of human intestinal epithelial cells exposed to Vibrio vulnificus. Microbes Infect, 2008. 10(14-15): p. 1504-13.
10. Kim, Y.R., et al., Vibrio vulnificus RTX toxin kills host cells only after contact of the bacteria with host cells. Cell Microbiol, 2008. 10(4): p. 848-62.
11. Lee, S.H., et al., Nucleotide sequence and spatiotemporal expression of the Vibrio cholerae vieSAB genes during infection. J Bacteriol, 1998. 180(9): p. 2298-305.
12. Tischler, A.D., S.H. Lee, and A. Camilli, The Vibrio cholerae vieSAB locus encodes a pathway contributing to cholera toxin production. J Bacteriol, 2002. 184(15): p. 4104-13.
13. Tischler, A.D. and A. Camilli, Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol, 2004. 53(3): p. 857-69.
14. Aloni, Y., D.P. Delmer, and M. Benziman, Achievement of high rates of in vitro synthesis of 1,4-beta-D-glucan: activation by cooperative interaction of the Acetobacter xylinum enzyme system with GTP, polyethylene glycol, and a protein factor. Proc Natl Acad Sci U S A, 1982. 79(21): p. 6448-52.
15. Cotter, P.A. and S. Stibitz, c-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol, 2007. 10(1): p. 17-23.
16. Tamayo, R., J.T. Pratt, and A. Camilli, Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol, 2007. 61: p. 131-48.
17. Romling, U. and D. Amikam, Cyclic di-GMP as a second messenger. Curr Opin Microbiol, 2006. 9(2): p. 218-28.
18. Lin, W., et al., Identification of a vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci U S A, 1999. 96(3): p. 1071-6.
19. 楊佑俊, 創傷弧菌一段與致病相關基因群組的功能探討, in 生物科技研究所. 國立交通大學, 2005.
20. 張格維, 創傷弧菌YJ016中一套訊號傳遞系統vva0326 - vva0329的特性分析探討. 國立交通大學, 2007.
21. 周莉芳, 創傷弧菌YJ016中調控環狀雙鳥嘌呤單鈴酸相關的vva0325-36基因群功能分析. 國立清華大學, 2009.
22. Schmidt, A.J., D.A. Ryjenkov, and M. Gomelsky, The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: Enzymatically active and inactive EAL domains. Journal of Bacteriology, 2005. 187(14): p. 4774-4781.
23. Johnson, D.E. and F.M. Calia, Hemolytic reaction of clinical and environmental strains of Vibrio vulnificus. J Clin Microbiol, 1981. 14(4): p. 457-9.
24. Neilands, B.S.a.J.B., Universal chemical assay for the detection and determination of siderophores. Anal. Biochem., 1987. 160(1): p. 47-56.
25. Gardel, C.L. and J.J. Mekalanos, Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression. Infect Immun, 1996. 64(6): p. 2246-55.
26. Fan, J.J., et al., Isolation and characterization of a Vibrio vulnificus mutant deficient in both extracellular metalloprotease and cytolysin. Infection and Immunity, 2001. 69(9): p. 5943-5948.
27. Simm, R., et al., GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol, 2004. 53(4): p. 1123-34.
28. Strom, M.S. and R.N. Paranjpye, Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect, 2000. 2(2): p. 177-88.
29. Simpson, L.M. and J.D. Oliver, Siderophore production by Vibrio vulnificus. Infect Immun, 1983. 41(2): p. 644-9.
30. Bassis, C.M. and K.L. Visick, The cyclic-di-GMP phosphodiesterase BinA negatively regulates cellulose-containing biofilms in Vibrio fischeri. J Bacteriol, 2010. 192(5): p. 1269-78.
31. Ryan, R.P., et al., Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(17): p. 6712-6717.
32. Navarro, M.V., et al., Structural analysis of the GGDEF-EAL domain-containing c-di-GMP receptor FimX. Structure, 2009. 17(8): p. 1104-16.
33. Hisert, K.B., et al., A glutamate-alanine-leucine (EAL) domain protein of Salmonella controls bacterial survival in mice, antioxidant defence and killing of macrophages: role of cyclic diGMP. Molecular Microbiology, 2005. 56(5): p. 1234-1245.
34. Oh, D.R., J.R. Kim, and Y.R. Kim, Genistein inhibits Vibrio vulnificus adhesion and cytotoxicity to HeLa cells. Arch Pharm Res, 2010. 33(5): p. 787-92.
35. Liu, M., et al., HlyU protein is a positive regulator of rtxA1, a gene responsible for cytotoxicity and virulence in the human pathogen Vibrio vulnificus. Infection and Immunity, 2007. 75(7): p. 3282-3289.
36. Lee, S.E., et al., Vibrio vulnificus has the transmembrane transcription activator ToxRS stimulating the expression of the hemolysin gene vvhA. Journal of Bacteriology, 2000. 182(12): p. 3405-3415.
37. Cheng, J.C., C.P. Shao, and L.I. Hor, Cloning and nucleotide sequencing of the protease gene of Vibrio vulnificus. Gene, 1996. 183(1-2): p. 255-7.
38. Miyoshi, S., et al., Functional domains of a zinc metalloprotease from Vibrio vulnificus. Journal of Bacteriology, 1997. 179(23): p. 7606-7609.
39. Shao, C.P. and L.I. Hor, Regulation of metalloprotease gene expression in Vibrio vulnificus by a Vibrio harveyi LuxR homologue. Journal of Bacteriology, 2001. 183(4): p. 1369-1375.
40. Shao, C.P., and L. I. Hor. , Metalloprotease is not essential for vibrio vulnificus virulence in mice. Infect. Immun., 2000. 68: p. 3567-3573.
41. Kim, Y.R. and J.H. Rhee, Flagellar basal body flg operon as a virulence determinant of Vibrio vulnificus. Biochemical and Biophysical Research Communications, 2003. 304(2): p. 405-410.
42. Lee, J.H., et al., Role of flagellum and motility in pathogenesis of Vibrio vulnificus. Infection and Immunity, 2004. 72(8): p. 4905-4910.
43. Donnenberg, M.S. and J.B. Kaper, Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun, 1991. 59(12): p. 4310-7.