簡易檢索 / 詳目顯示

研究生: 吳偉誠
Wei Cheng Wu
論文名稱: 利用基因微陣列系統分析微波對人類表皮細胞的影響
cDNA Microarray Analysis of Human Keratinocytes Irradiated by Microwave
指導教授: 許志楧
Ian C. Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 63
中文關鍵詞: 生物晶片基因微陣列晶片微波射頻輻射
外文關鍵詞: biochip, microarray, microwave, radiofrequency
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    微波對生物的影響至今尚未有明確的定論,本研究朝以下兩個研究方向來探討這個主題:(1)微波的非熱效應對細胞直接的影響;(2)微波的非熱效應對細胞修復過程的干擾。我們使用細胞群落分析與基因微陣列晶片兩種方法來研究細胞在恆溫37°C下受到頻率2.45GHz,功率密度為4mW/cm2的微波照射下其細胞增生能力與基因表現。在第一個研究方向中,藉由細胞群落分析的實驗中得知,當細胞受到微波直接照射6小時後增生能力明顯下降。利用基因微陣列晶片分析的結果則顯示出細胞照射微波會使其82個基因有顯著表現,而這些基因大多與蛋白質折疊、磷酸化、DNA複製、核苷酸合成等相關。在第二個研究方向中,細胞群落分析實驗使我們發現,微波可能干擾細胞修復過程而導致細胞受到紫外光傷害後存活率減少。此外,基因微陣列晶片的結果則顯示出,當細胞先受到紫外光傷害再照射微波後有104個基因受到影響。這些基因的功能與轉錄調控、蛋白質分解、磷酸化、金屬離子傳遞等相關。根據上述的所有結果我們推論,微波的非熱效應會直接影響細胞生存率與部分功能基因群的調控。受到傷害的細胞,微波也會影響其生存率,其顯著表現差異的基因當中部分基因與直接照射微波或紫外光表現趨勢一樣,更證實了基因微陣列系統可以準確的偵測出基因的相對表現量。


    ABSTRACT
    The biological effects of microwave(300MHz~300GHz) have remained contentious. This study considers the subject from the following two aspects: (1) the non-thermal effects of microwave, (2) the interference of non-thermal effects from microwave on cell repair process. We used two biological experiments colony assay and cDNA microarray to explain cell proliferation and gene expression after 2.45GHz, 4mW/cm2 microwave exposure at 37°C. Firstly, the colony assay experiment showed that cell proliferation decreased significantly after cell was exposed under microwave for 6 hours. The finding of cDNA microarray study indicated that 82 gene altered their gene expression after microwave exposure. Their major biological functions related to protein folding, phosphorylation, cell cycle, DNA replication, and nucleotide biosynthesis. Secondly, the study of colony assay revealed that microwave could interfere with cell repair process and thus decrease cell survival rate after damaged by UVB. Besides, the cDNA microarray study presented that 104 genes, which mostly command the genomic functions of regulation of transcription, phosphorylation, proteolysis, and metal ion transport were affected. Judging from the above, the non-thermal effects of microwave can influence cell proliferation and regulate parts of genomic functions.

    目 錄 中文摘要……………………………………………………………………………..1 英文摘要……………………………………………………………………………..2 誌謝…………………………………………………………………………………..3 目錄…………………………………………………………………………………4 圖目錄………………………………………………………………………………7 表目錄………………………………………………………………………………9 第一章 緒論 1.1文獻回顧........................................................................................................10 1.2研究假設及目的……………………………………………………………14 第二章 材料與方法 2.1實驗材料……………………………………………………………………16 2.1.1細胞株………………………………………………………………16 2.1.2微波系統……………………………………………………………16 a.微波照射系統…………………………………………………………16 b.溫控系統………………………………………………………………17 c.二氧化碳系統…………………………………………………………18 2.1.3紫外線照射系統……………………………………………………18 2.1.4細胞群落分析………………………………………………………21 2.1.5基因微陣列系統……………………………………………………21 a.玻片……………………………………………………………………22 b.探針……………………………………………………………………22 c.點印系統………………………………………………………………23 d.雷射掃瞄系統…………………………………………………………24 2.2實驗方法……………………………………………………………………25 2.2.1微波照射系統………………………………………………………25 2.2.2溫控系統……………………………………………………………25 2.2.3二氧化碳系統………………………………………………………25 2.2.4細胞群落分析實驗…………………………………………………26 2.2.5基因微陣列晶片實驗………………………………………………28 a.實驗流程………………………………………………………………28 b.數據分析………………………………………………………………30 第三章 實驗結果 3.1實驗結果………………………………………………………………........33 3.1.1微波照射系統測試結果……………………………………………33 3.1.2溫控系統測試結果…………………………………………………33 3.1.3二氧化碳系統測試結果……………………………………………34 3.1.4細胞群落分析實驗結果……………………………………………39 3.1.5基因微陣列實驗結果………………………………………………40 第四章 討論與結論 4.1系統測試討論與結論………………………………………………………52 4.2細胞群落分析討論與結論…………………………………………………53 4.3基因微陣列晶片實驗討論與結論…………………………………………54 參考文獻……………………………………………………………………………55 附錄A………………………………………………………………………………58 附錄B………………………………………………………………………………63 圖目錄 圖1.1 電磁波頻譜………………………………………………………………14 圖2.1 微波照射系統……………………………………………………………17 圖2.2 電磁波量測儀……………………………………………………………17 圖2.3 溫控系統…………………………………………………………………18 圖2.4 二氧化碳系統……………………………………………………………...19 圖2.5 微波系統實圖……………………………………………………………..... 20 圖2.6 紫外光照射系…………………………………………………………20 圖2.7 紫外光強度分佈圖………………………………………………………21 圖2.8 基因微陣列原理示意圖…………………………………………………22 圖2.9 點印系統…………………………………………………………………24 圖2.10 雷射掃瞄系統……………………………………………………………24 圖2.11 細胞群落分析操作流程圖………………………………………………27 圖2.12 實驗組與控制組細胞實驗流程圖………………………………………28 圖2.13 迴圈設計圖………………………………………………………………31 圖3.1 微波照射系統測試結果…………………………………………………33 圖3.2 溫控系統測試結果………………………………………………………34 圖3.3 二氧化碳偵測器放於右上角測試二氧化碳濃度分佈圖………………35 圖3.4 二氧化碳偵測器放於右下角測試二氧化碳濃度分佈圖………………35 圖3.5 二氧化碳偵測器放於左上角測試二氧化碳濃度分佈圖………………36 圖3.6 二氧化碳偵測器放於左下角測試二氧化碳濃度分佈圖………………36 圖3.7 二氧化碳偵測器放於微波共振腔內測試二氧化碳濃度分佈圖………37 圖3.8 開壓克力罩門四次測試二氧化碳濃度分佈圖…………………………38 圖3.9 細胞群落分析實驗結果…………………………………………………39 圖3.10 MA點狀分佈圖…………………………………………………………41 圖3.11 歸一化前後MA點狀分佈圖.……………………………………………45 圖3.12 M/Ctrl、UV/Ctrl與(UV+M)/Ctrl交集基圖………………………………..47 圖3.13 M/Ctrl與(UV+M)/Ctrl交集皆為上調基因圖……………………………..47 圖3.14 M/Ctrl與(UV+M)/Ctrl交集皆為下調基因圖……………………………...48 圖3.15 M/Ctrl與(UV+M)/Ctrl交集,M/Ctrl為上調(UV+M)為下調基因圖……..48 圖3.16 UV/Ctrl與(UV+M)/Ctrl交集皆為下調基因圖…………………………….49 圖3.17 UV/Ctrl與(UV+M)/Ctrl交集皆為上調基因圖……………………………49 圖3.18 M/Ctrl、UV/Ctrl與(UV+M)/Ctrl交集基因圖……………………………..50 圖3.19階層式群集分析圖………………………………………………………….51 圖A.1 迴圈設計…………………………………………………………………58 表目錄 表3.1 將二氧化碳偵測器置於四個角落與微波共振腔內,分別測其二氧化碳濃度達5%後濃度平均值、標準差、CV值濃度由0%到5%耗費時間列表…..………37 表3.2 裝有細胞培養液的培養盤置於細胞培養箱與微波共振腔後不同時間點pH值列表……………………………………………………………………………39 表3.3 三組實驗組分別與控制組比有顯著表現差異基因進行基因分類資料庫後,依生物功能分成7大群……………………………………………………….47 表3.4 三組實驗組分別與控制組比經由統計檢定後有顯著差異基因數……….47 表B.1 整理電磁波生物效應相關期刊表格,以此表格當作選擇電磁波功率密度的標準……………………………………………………………………………….63

    參考文獻
    1. Lin, J. C. Microwave auditory effect- a comparison of some possible transduction mechanisms. J Microw Power 11, 77-81 (1976).
    2. Rugh, R. & McManaway, M. Anesthesia as an effective agent against the production of congenital anomalies in mouse fetuses exposed to electromagnetic radiation. J Exp Zool 197, 363-7 (1976).
    3. Vela, G. R. & Wu, J. F. Mechanism of lethal action of 2,450-MHz radiation on microorganisms. Appl Environ Microbiol 37, 550-3 (1979).
    4. Szmigielski, S., Kobus, M., Janiak, M. & Rytko, J. Effect of microwave radiation on cells treated with membrane-injuring substances. Exp Pathol (Jena) 13, 296-301 (1977).
    5. Raaphorst, G. P., Azzam, E. I., Sargent, M. D., Einspenner, M. & Borsa, J. The oncogenic potential of X rays and/or hyperthermia in C3H-10T 1/2 cells. Br J Radiol 54, 638-9 (1981).
    6. Harisiadis, L., Miller, R. C., Harisiadis, S. & Hall, E. J. Oncogenic transformation and hyperthermia. Br J Radiol 53, 479-82 (1980).
    7. Clark, E. P., Hahn, G. M. & Little, J. B. Hyperthermic modulation of X-ray-induced oncogenic transformation in C3H 10T1/2 cells. Radiat Res 88, 619-22 (1981).
    8. McRee, D. I. & MacNichols, G. Incidence of sister chromatid exchange in bone marrow cells of the mouse following microwave exposure. Radiat Res 85, 340-8 (1981).
    9. Meltz, M. L., Walker, K. A. & Erwin, D. N. Radiofrequency (microwave) radiation exposure of mammalian cells during UV-induced DNA repair synthesis. Radiat Res 110, 255-66 (1987).
    10. Maes, A., Verschaeve, L., Arroyo, A., De Wagter, C. & Vercruyssen, L. In vitro cytogenetic effects of 2450 MHz waves on human peripheral blood lymphocytes. Bioelectromagnetics 14, 495-501 (1993).
    11. Vijayalaxmi et al. Frequency of micronuclei in the peripheral blood and bone marrow of cancer-prone mice chronically exposed to 2450 MHz radiofrequency radiation. Radiat Res 147, 495-500 (1997).
    12. Sarkar, S., Ali, S. & Behari, J. Effect of low power microwave on the mouse genome: a direct DNA analysis. Mutat Res 320, 141-7 (1994).
    13. Malyapa, R. S. et al. Measurement of DNA damage after exposure to 2450 MHz electromagnetic radiation. Radiat Res 148, 608-17 (1997).
    14. Malyapa, R. S. et al. DNA damage in rat brain cells after in vivo exposure to 2450 MHz electromagnetic radiation and various methods of euthanasia. Radiat Res 149, 637-45 (1998).
    15. 余儘卿. 1999. 利用細胞存活率分析高頻電磁波對DNA修復之影響.國立清華大學原子科學系碩士論文
    16. 陳孟偉. 2000. 以比色分析法分析微波及極低頻電磁場對DNA受損細胞其存活率之影響.國立清華大學原子科學系碩士論文
    17. Duggan, D. J. et al. Expression profiling using cDNA microarrays.Nat Genet 21, 10-4(1999).
    18. Balcer-Kubiczek, E. K. & Harrison, G. H. Induction of neoplastic transformation in C3H/10T1/2 cells by 2.45-GHz microwaves and phorbol ester. Radiat Res 117, 531-7 (1989).
    19. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Phys 74, 494-522 (1998).
    20. Szabo, I., Rojavin, M. A., Rogers, T. J. & Ziskin, M. C. Reactions of keratinocytes to in vitro millimeter wave exposure. Bioelectromagnetics 22, 358-64 (2001).
    21. Liu, X. et al. [The microarray study on the stress gene transcription profile in human retina pigment epithelial cells exposed to microwave radiation]. Zhonghua Yu Fang Yi Xue Za Zhi 36, 291-4 (2002).
    22. Ramundo-Orlando, A., Liberti, M., Mossa, G. & D'Inzeo, G. Effects of 2.45 GHz microwave fields on liposomes entrapping glycoenzyme ascorbate oxidase: evidence for oligosaccharide side chain involvement. Bioelectromagnetics 25, 338-45 (2004).
    23. Markkanen, A. et al. Apoptosis induced by ultraviolet radiation is enhanced by amplitude modulated radiofrequency radiation in mutant yeast cells. Bioelectromagnetics 25, 127-33 (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE