研究生: |
郭明翰 Kuo, Ming-Han. |
---|---|
論文名稱: |
設計與建構基於指數分配之壽命績效驗收 抽樣計畫及操作平台 Design and Construction of Lifetime Performance Acceptance Sampling Plans and an Operating Platform for Exponential Lifetime Products |
指導教授: |
吳建瑋
Wu, Chien-Wei |
口試委員: |
蘇明鴻
張國浩 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 驗收抽樣計畫 、製程能力指標 、壽命績效指標 、設限樣本 、指數分配 |
外文關鍵詞: | Acceptance sampling plan, Process capability indices, Lifetime performance index, censored sample, exponential distribution |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
產品的品質是決定一家公司企業競爭力的主要因素,而壽命是衡量電子產品
品質的重要標準。為了把關產品的品質,需對產品的元件與成品做檢驗,而驗收
抽樣計畫是能夠在保障買賣雙方的品質水準要求與風險條件下,短時間內對貨批
做出判決的檢驗方式。此外,製程能力指標是衡量製程品質的有效工具,由於電
子產品的壽命通常服從非常態的分配,故使用壽命績效指標來衡量壽命表現。再
者,在實務上對產品進行壽命檢測實驗時,檢測人員可能無法永遠保持在崗位觀
測樣本,亦可能發生產品在實驗過程中意外毀損或是離開實驗的狀況,造成有缺
漏的觀測值。為了處理上述壽命檢測實驗中可能發生的狀況,並有效地衡量電子
產品的壽命品質,以及保障買賣雙方對品質的要求與風險條件,本研究旨在對壽
命服從指數分配的產品,在逐步型二右設限樣本的資料型態下,以壽命績效指標
的均勻最小變異數不偏估計量為基礎發展兩種不同策略的驗收抽樣計畫,分別為
單次抽樣計畫與重複群集抽樣計畫,並提供兩種抽樣計畫的計畫參數表供使用者
於實務上查閱與利用。本研究亦將發展出的單次抽樣計畫與重複群集抽樣計畫於
各個方面做比較分析,並引用真實案例的數據資料實際操作,以說明本研究的兩
個抽樣計畫在實務中的應用方式,也建構出圖形化使用者介面以利使用者於實務
中能夠更容易且直觀地執行本研究所發展的抽樣計畫。
The quality of products is a main factor to the competitiveness of a company, and lifetime is a critical criterion to evaluate the quality of electronic products. In order to ensure the quality of products, examinations on components and final products are needed. Acceptance sampling plan is an examination method that can ensure quality requirements and protect risks of producers and consumers while sentencing a lot in a short time. Besides, process capability indices are effective tools to evaluate the performance of a process, and lifetime performance index is used for electronic products due to their non-normally distributed lifetime quality characteristic. Moreover, during a lifetime test, the experimenters may not be able to always be in position to observe all the lifetimes of the products, or the products may be broken accidentally, which cause them to leave the experiment before they fail ordinarily. To tackle the problems above, two kinds of acceptance sampling plans are developed based on the lifetime performance index for exponential lifetime products, and the progressively type II right censored sample is used as the data type of the lifetime test experiment. The solutions of plan parameters are provided in tables for practical use and a comparison between two plans is presented. Additionally, an applied example is presented for demonstrating the developed sampling plans, and a graphical user interface is made for users to implement the developed sampling plans more intuitively.
一、 中文文獻
1. 陳冠潔 (2016)。基於製程能力指標之產出績效檢定與驗收抽樣計畫操作平台建構。國立清華大學工業工程與工程管理學系碩士論文,未出版,新竹市。
2. 鄭春生 (2010)。品質管理-現代化觀念與實務應用。新北市:全華。
二、 英文文獻
1. Anderson, D. R., Sweeney, D. J., & Williams, T. A. (1990). Statistics for business & economics, Saint Paul, MN: West Publishing Company.
2. Aslam, M., Azam, M., & Jun, C. H. (2017). A New Sampling Plan under the Exponential Distribution. Communications in Statistics - Theory and Methods, 46(2), 644-652.
3. Balakrishnan, N., & Aggarwala, R. (2000). Progressive Censoring: Theory, Methods, and Applications. Boston, MA: Birkhäuser.
4. Balakrishnan, N., & Cohen, A. C. (1991). Order Statistics & Inference: Estimation Methods. San Diego, CA: Academic Press.
5. Balamurali, S., & Jun, C. H. (2006). Repetitive group sampling procedure for variables inspection. Journal of Applied Statistics, 33(3), 327-338.
6. Balamurali, S., & Jun, C. H. (2007). Multiple dependent state sampling plans for lot acceptance based on measurement data. European Journal of Operational Research, 180(3), 1221-1230.
7. Balamurali, S., Park, H., Jun, C. H., Kim, K. J., & Lee, J. (2005). Designing of variables repetitive group sampling plan involving minimum average sample number. Communications in Statistics—Simulation and Computation, 34(3), 799-809.
8. Boyles, R. A. (1991). The Taguchi capability index. Journal of Quality Technology, 23, 17-26.
9. Chen, L. K., Cheng, S. W., & Spring, F. A. (1988). A new measure of process capability. Journal of Quality Technology, 20(3), 162-175.
10. Cohen, A. C. (1963). Progressively censored samples in life testing. Technometrics, 5(3), 327-339.
11. Epstein, B., & Sobel, M. (1953). Life testing. Journal of the American Statistical Association, 48(263), 486-502.
12. Ferrell, W. G., & Chhoker, A. (2002). Design of economically optimal acceptance sampling plans with inspection error. Computers & Operations Research, 29(10), 1283-1300.
13. Govindaraju, K., & Ganesalingam, S. (1997). Sampling inspection for resubmitted lots. Communications in Statistics-Simulation and Computation, 26(3), 1163-1176.
14. Hamaker, H. C. (1979). Acceptance sampling for percent defective by variables and by attributes. Journal of Quality Technology, 11(3), 139-148.
15. Hogg, R. V., Mckean, J. W., & Craig, A. T. (2013). Introduction to Mathematical Statistics (6th ed.). Pearson Education, Inc.
16. Hong, C. W., Lee, W. C., & Wu, J. W. (2012). Computational procedure of performance assessment of lifetime index of products for the Weibull distribution with the progressive first-failure-censored sampling plan. Journal of Applied Mathematics, 2012.
17. Hong, C. W., Wu, J. W., & Cheng, C. H. (2009). Implementing lifetime performance index for the Pareto lifetime businesses of the service industries. Quality & Quantity, 43(2), 291-304.
18. Juran, J. M., Gryna, F. M., & Bingham Jr, R. S. Quality Control Handbook, 1974. McGraw-Hill Book Company, Chapters, 9, 22.
19. Kane, V. E. (1986). Process capability indices. Journal of quality technology, 18(1), 41-52.
20. Kao, J. H. (1964). Sampling procedures and tables for inspection by variables for percent defective. Journal of Quality Technology, 3, 28-37.
21. Keller, G., Warrack, B., & Bartel, H. (1994). Statistics for Management and Economics. Belmont, CA: Duxbury Press.
22. Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data (2nd ed.). NY: John Wiley & Sons.
23. Lee, A. H., Wu, C. W., & Chen, Y. W. (2016). A modified variables repetitive group sampling plan with the consideration of preceding lots information. Annals of Operations Research, 238(1-2), 355-373.
24. Lee, H. M., Wu, J. W., Lei, C. L., & Hung, W. L. (2011). Implementing lifetime performance index of products with two-parameter exponential distribution. International Journal of Systems Science, 42(8), 1305-1321.
25. Lee, W. C. (2008). Statistical testing for assessing lifetime performance Index of the Rayleigh lifetime products. Journal of the Chinese Institute of Industrial Engineers, 25(6), 433-445.
26. Lee, W. C. (2010). Assessing the lifetime performance index of gamma lifetime products in the manufacturing industry. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224(10), 1571-1579.
27. Lee, W. C. (2011). Inferences on the lifetime performance index for Weibull distribution based on censored observations using the max p-value method. International Journal of Systems Science, 42(6), 931-937.
28. Lee, W. C., Wu, J. W., & Hong, C. W. (2009). Assessing the lifetime performance index of products with the exponential distribution under progressively type II right censored samples. Journal of Computational and Applied Mathematics, 231(2), 648-656.
29. Lee, W. C., Wu, J. W., & Lei, C. L. (2010). Evaluating the lifetime performance index for the exponential lifetime products. Applied Mathematical Modelling, 34(5), 1217-1224.
30. Lee, W. C., Wu, J. W., & Lei, C. L. (2010). Evaluating the lifetime performance index for the exponential lifetime products. Applied Mathematical Modelling, 34(5), 1217-1224.
31. Meyer, P. L. (1965). Introductory Probability and Statistical Applications. Boston, MA: Addison-Wesley.
32. Montgomery, D. C. (1985). Introduction to Statistical Quality Control. NY: John Wiley & Sons.
33. Pearn, W. L., & Chen, K. S. (1997). Capability indices for non-normal distributions with an application in electrolytic capacitor manufacturing. Microelectronics Reliability, 37(12), 1853-1858.
34. Pearn, W. L., Kotz, S., & Johnson, N. L. (1992). Distributional and inferential properties of process capability indices. Journal of Quality Technology, 24(4), 216-231.
35. Sherman, R. E. (1965). Design and evaluation of a repetitive group sampling plan. Technometrics, 7(1), 11-21.
36. Tong, L. I., Chen, K. S., & Chen, H. T. (2002). Statistical testing for assessing the performance of lifetime index of electronic components with exponential distribution. International Journal of Quality & Reliability Management, 19(7), 812-824.
37. Viveros, R., & Balakrishnan, N. (1994). Interval estimation of parameters of life from progressively censored data. Technometrics, 36(1), 84-91.
38. Wortham, A. W., & Baker, R. C. (1976). Multiple deferred state sampling inspection. The International Journal of Production Research, 14(6), 719-731.
39. Wu, C. W., Aslam, M., Chen, J. C., & Jun, C. H. (2015). A repetitive group sampling plan by variables inspection for product acceptance determination. European Journal of Industrial Engineering, 9(3), 308-326.
40. Wu, C. W., Pearn, W. L., & Kotz, S. (2009). An overview of theory and practice on process capability indices for quality assurance. International journal of production economics, 117(2), 338-359.
41. Wu, J. W., Lee, H. M., & Lei, C. L. (2007). Computational testing algorithmic procedure of assessment for lifetime performance index of products with two-parameter exponential distribution. Applied Mathematics and Computation, 190(1), 116-125.
42. Wu, J. W., Lee, H. M., & Lei, C. L. (2008). Computational procedure for assessing lifetime performance index of products for a one-parameter exponential lifetime model with the upper record values. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(12), 1729-1739.
43. Yan, A., & Liu, S. (2016). Designing a repetitive group sampling plan for Weibull distributed processes. Mathematical Problems in Engineering, vol. 2016. doi:10.1155/2016/5862071.
44. Zehna, P. W. (1966). Invariance of maximum likelihood estimators. Annals of Mathematical Statistics, 37(3), 744-744.