研究生: |
方皓賢 Fang, Hao-Hsien |
---|---|
論文名稱: |
先進耐熱鋼的研究開發 Research and Development advanced heat resistant steels |
指導教授: | 葉安洲 |
口試委員: |
張士欽
張雲開 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 75 |
中文關鍵詞: | 合金設計 、HP耐熱鋼 、潛變 、氧化性質 、機械性質 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了提升傳統商用耐熱不鏽鋼的高溫強度,同時降低合金成本,本研究基於鐵-鎳-鉻耐熱鋼合金系統設計出五個新耐熱合金:合金A-E。設計理念包括節鎳以節省合金成本;並添加微量元素,如鈮、鈷、鎢與鉬,加上碳與矽含量的提升,藉此形成多種碳化物如MC、M7C3與 M23C6來增加高溫強度。
本研究探討設計合金A-E和商用HP耐熱鋼的諸多性質,並進行比較。包括:鑄造態微結構觀察;機械性質測試如室溫硬度、1000℃拉伸測試、900℃/65MPa與982℃/35MPa的潛變測試;氧化性質測試包括: 900℃循環氧化測試、1000℃/1100℃/1150℃預氧化研究等。
實驗結果顯示,藉由鈮、鎢、鈷和鉬的添加,以及節鎳節鉻設計,而擁有不連續碳化物分布、緩慢的二次析出物成長速率等特性的合金E,其潛變壽命比商用HP耐熱鋼高20倍以上,室溫硬度與1000℃的拉伸強度也為商用HP耐熱鋼的1.4倍。此外,透過1000℃/50h的預氧化處理,合金E也能達到與商用HP耐熱鋼相同的抗氧化能力。因此,本研究成功開發出足以取代商用HP耐熱鋼之新型耐熱不鏽鋼。
Five heat resistant steel compositions (Alloy A-E) have been designed based on the Fe-Ni-Cr alloy system in attempts to increase cost performance of conventional heat resistant steels. With systematic additions of C, Si, Co, W, Nb, Mo, and the reduction of Ni content, further strengthening can be provided by formation of various types of carbides such as MC, M7C3, and M23C6.
To evaluate their properties, experimental work includes room temperature hardness, 1000°C tensile tests, creep tests under 900°C/65MPa and 982°C/35MPa, and high temperature oxidation of as-cast and pre-oxidized samples at 1000°C, 1100°C and 1150°C.
Comparing to the properties commercial HP alloy, the newly designed alloy can exhibit more than 10 times increase in creep rupture life by discontinuous carbide distribution and higher MC to M23C6 ratio caused by Nb, W and Mo addition and Cr decrement. Besides, tensile strength at 1000°C and room temperature hardness is 1.4 times better than that of HP alloy. Furthermore, the oxidation resistance was maintained by pre-oxidized treatment at 1000°C. Advanced heat resistant steels have been developed successfully with much improved cost-performance in this work.
1. Kubota Corporation, HD data sheet. Kubota Corporation.
2. Kubota Corporation, HP data sheet. Kubota Corporation.
3. R. Voicu, J. Lacaze, E. Andrieu, D. Poquillon, J. Furtado, Creep and tensile behaviour of austenitic Fe–Cr–Ni stainless steels. Materials Science and Engineering: A, 2009. 510–511(0): p. 185-189.
4. M. Tamura, F. Abe, K. Shiba, H. Sakasegawa, H. Tanigawa, Larson–miller constant of heat-resistant steel. Metallurgical and Materials Transactions A, 2013. 44(6).
5. Taiwan Power Company, Taichung coal fire power plant.
6. Taiwan Power Company, Fraction of different electricity generation methods in Taiwan.
7. Innovative Combustion Technologies, PLUGGED BURNER LINES. Available from: http://www.innovativecombustion.com/plugged_lines.html.
8. Taiwan Power Company, Process flow diagram of coal fire power plant.
9. A.K. Ray, S.K. Sinha, Y.N. Tiwari, J. Swaminathan, G. Das, S. Chaudhuri, R. Singh, Analysis of failed reformer tubes. Engineering Failure Analysis, 2003. 10(3): p. 351-362.
10. Nickel Institute, Castings - Stainless Steel and Nickel Base. Technical Literature: p. 3-21.
11. Nickel Institute, Heat and corrosion-resistant castings. Technical Literature, 1978: p. 5-13.
12. D. Joseph R, Heat-resistant materials. ASM International, 1997: p. 200-218.
13. J. Rodrı́guez, S. Haro, A. Velasco, R. Colás, A metallographic study of aging in a cast heat-resisting alloy. Materials Characterization, 2000. 45(1): p. 25-32.
14. M. Donachie, Superalloys: a technical guide. ASM international, 2002: p. 1-41.
15. Q.Z. Chen, C.W. Thomas, D.M. Knowles, Characterisation of 20Cr32Ni1Nb alloys in as-cast and Ex-Service conditions by SEM, TEM and EDX. Materials Science and Engineering: A, 2004. 374(1–2): p. 398-408.
16. X.Q. Wu, H.M. Jing, Y.G. Zheng, Z.M. Yao, W. Ke, Z.Q. Hu, The eutectic carbides and creep rupture strength of 25Cr20Ni heat-resistant steel tubes centrifugally cast with different solidification conditions. Materials Science and Engineering: A, 2000. 293(1–2): p. 252-260.
17. L.H. de Almeida, A.F. Ribeiro, I. Le May, Microstructural characterization of modified 25Cr–35Ni centrifugally cast steel furnace tubes. Materials Characterization, 2002. 49(3): p. 219-229.
18. R. Abbaschian, R.E. Reed-Hill, Physical metallurgy principles. Cengage Learning, 2008.
19. R.C. Reed, The Superalloys: Fundamentals and Applications. Cambridge University Press, 2006: p. 28.
20. R. Peraldi, B.A. Pint, Effect of Cr and Ni contents on the oxidation behavior of ferritic and austenitic model alloys in air with water vapor. Oxidation of Metals, 2004. 61(5-6): p. 463-483.
21. S.J. Zhu, Y. Wang, S.G. Xu, F.G. Wang, Influence of carbon on creep crack growth of a cast HP alloy. Materials Science and Engineering: A, 1990. 127(2): p. 7-10.
22. Y.H. Yang, L.H. Zhu, Q.J. Wang, C.C. Zhu, Microstructural evolution and the effect on hardness and plasticity of S31042 heat-resistant steel during creep. Materials Science and Engineering: A, 2014. 608(0): p. 164-173.
23. D.J. Powell, R. Pilkington, D.A. Miller, The precipitation characteristics of 20% Cr/25% Ni-Nb stabilised stainless steel. Acta Metallurgica, 1988. 36(3): p. 713-724.
24. A.M. Babakr, A. Al-Ahmari, K. Al-Jumayiah, F. Habiby, Sigma phase formation and embrittlement of cast iron-chromium-nickel (Fe-Cr-Ni) alloys. Journal of Minerals and Materials Characterization and Engineering, 2008. 7(2): p. 127-145.
25. S. Haro, R. Colás, A. Velasco, D. López, Study of weldability of a Cr–Si modified heat-resisting alloy. Materials Chemistry and Physics, 2003. 77(3): p. 831-835.
26. J. M. Vitek, S.A. David, The sigma phase transformation in austenitic stainless steels. Welding Journal, 1986: p. 106-111.
27. D.J. Kotecki, Welding of stainless steels. ASM INTERNATIONAL, 1993. 6: p. 678-707.
28. A.K. Niessen, The enthalpy of formation of solid borides, carbides, nitrides, silicides and phosphides of transition and noble metals. Journal of the Less Common Metals, 1981. 82: p. 75-80.
29. Y. Zhang, Y.F. Sun, S. Guan, X. Deng, X.Y. Yan, Effect of titanium and tungsten on the structure and properties of heat-abrasion resistant steel. Materials Science and Engineering: A, 2008. 478(1–2): p. 214-220.
30. F.C. Nunes, L.H. De Almeida, J. Dille, J.-L. Delplancke, I. Le May, Microstructural changes caused by yttrium addition to NbTi-modified centrifugally cast HP-type stainless steels. Materials Characterization, 2007. 58(2): p. 132-142.
31. S. Shi, J.C. Lippold, Microstructure evolution during service exposure of two cast, heat-resisting stainless steels — HP–Nb modified and 20–32Nb. Materials Characterization, 2008. 59(8): p. 1029-1040.
32. T. Sourmail, Precipitation in creep resistant austenitic stainless steels. Materials Science and technology, 2001. 17(1): p. 1-14.
33. G.J. Cox, A re-examination of compositional effects in cast, austenitic heat-resisting steels with particular reference to the use of niobium. The British foundryman, 1978. 71(12): p. 263-278.
34. B. Piekarski, Effect of Nb and Ti additions on microstructure, and identification of precipitates in stabilized Ni-Cr cast austenitic steels. Materials Characterization, 2001. 47(3–4): p. 181-186.
35. S. Borjali, S.R. Allahkaram, H. Khosravi, Effects of working temperature and carbon diffusion on the microstructure of high pressure heat-resistant stainless steel tubes used in pyrolysis furnaces during service condition. Materials & Design, 2012. 34: p. 65-73.
36. R. Dehmolaei, M. Shamanian, A. Kermanpur, Microstructural characterization of dissimilar welds between alloy 800 and HP heat-resistant steel. Materials Characterization, 2008. 59(10): p. 1447-1454.
37. G.D. Barbabela, L.H. de Almeida, T.L. da Silveira, I. Le May, Phase characterization in two centrifugally cast HK stainless steel tubes. Materials Characterization, 1991. 26(1): p. 1-7.
38. A.F. Ribeiro, R.M. Tavares Borges, L.H. De Almeida, Phase transformation in heat resistant steels observed by Stem (NbTi) C–NiNbSi (G-Phase). Acta Microscopica, 2002. 11: p. 59-63.
39. G.D. Barbabela, L.H. de Almeida, T.L. da Silveira, I. Le May, Role of Nb in modifying the microstructure of heat-resistant cast HP steel. Materials Characterization, 1991. 26(3): p. 193-197.
40. C.M. Schillmoller, U.W. Van Den Bruck, Selecting high performance castings for petrochemical furnaces. NACE corrosion 85, Boston, March 1985.
41. E.A. Kenik, P.J. Maziasz, R.W. Swindeman, J. Cervenka, D. May, Structure and phase stability in a cast modified-HP austenite after long-term ageing. Scripta Materialia, 2003. 49(2): p. 117-122.
42. G.D. de Almeida Soares, L.H. de Almeida., T.L. da Silveira, I. Le May, Niobium additions in HP heat-resistant cast stainless steels. Materials Characterization, 1992. 29(3): p. 387-396.
43. T.L. Shinoda, M.B. Zaghloul, Y. Kondo, R. Tanaka, The effect of single and combined additions of Ti and Nb on the structure of the centrifugally cast HK40 steel. Transactions of the Iron and Steel Institute of Japan, 1998. Vol. 18: p. 139-148.
44. R. Wan, F. Sun, L. Zhang, A. Shan, Effects of Mo on high-temperature strength of fire-resistant steel. Materials & Design, 2012. 35: p. 335-341.
45. B. Peng, H. Zhang, J. Hong, J. Gao, H. Zhang, Q. Wang, J. Li, The effect of M23C6 on the high-temperature tensile strength of two austenitic heat-resistant steels: 22Cr–25Ni–Mo–Nb–N and 25Cr–20Ni–Nb–N. Materials Science and Engineering: A, 2011. 528(10-11): p. 3625-3629.
46. U. Malayoglu, A. Neville, Mo and W as alloying elements in Co-based alloys—their effects on erosion–corrosion resistance. Wear, 2005. 259(1-6): p. 219-229.
47. M.P Brady, Y. Yamamoto, M.L Santella, P.J Maziasz, B.A Pint, C.T. Liu, Z.P. Lu, H. Bei, The development of alumina-forming austenitic stainless steels for high-temperature structural use. JOM, 2008. 60(7): p. 12-18.
48. D.L. Douglass, J.S. Armijo, The effect of silicon and manganese on the oxidation mechanism of Ni-20 Cr. Oxidation of Metals, 1970. 2(2): p. 207-231.
49. N. Xu, D. Monceau, D. Young, J. Furtado, High temperature corrosion of cast heat resisting steels in CO + CO2 gas mixtures. Corrosion Science, 2008. 50(8): p. 2398-2406.
50. R. Voicu, E. Andrieu, D. Poquillon, J. Furtado, J. Lacaze, Microstructure evolution of HP40-Nb alloys during aging under air at 1000 °C. Materials Characterization, 2009. 60(9): p. 1020-1027.
51. H.J.T. Ellingham, Transactions and Communications. Journal of the Chemical Society, 1944. 63(5): p. 125.
52. A.F. Padilha, P.R. Rios, Decomposition of austenite in austenitic stainless steels. ISIJ international, 2002. 42(4): p. 325-337.
53. J. Laigo, F. Christien, R. Le Gall, F. Tancret, J. Furtado, SEM, EDS, EPMA-WDS and EBSD characterization of carbides in HP type heat resistant alloys. Materials Characterization, 2008. 59(11): p. 1580-1586.
54. Sh. Zangeneh, H. Farhangi, Influence of service-induced microstructural changes on the failure of a cobalt-based superalloy first stage nozzle. Materials & Design, 2010. 31(7): p. 3504-3511.
55. R.A. Pedro Ibañez, G.D. de Almeida Soares, L.H. de Almeida, I. Le May, Effects of Si content on the microstructure of modified-HP austenitic steels. Materials Characterization, 1993. 30(4): p. 243-249.
56. R.C. Ecob, R.C. Lobb, V.L. Kohler, The formation of G-phase in 20/25 Nb stainless steel AGR fuel cladding alloy and its effect on creep properties. Journal of Materials Science, 1987. 22(8): p. 2867-2880.
57. K. Guan, H. Xu, Z. Wang, Quantitative study of creep cavity area of HP40 furnace tubes. Nuclear Engineering and Design, 2005. 235(14): p. 1447-1456.
58. W.T. Hou, R.W.K. Honeycombe, Structure of centrifugally cast austenitic stainless steels. Materials Science and technology, 1985. 1(5): p. 385-397.
59. K. Shinozaki, H. Kuroki, Y. Nakao, K. Nishimoto, M. Inui, M.Takahashi, Deterioration of weldability of long-term aged HP heat-resistant cast steel containing Nb, Mo, and W. Welding international, 1999. 13(1): p. 39-48.
60. A.F. Ribeiro, L.H. de Almeida, D.S. dos Santos, D. Fruchart, G.S. Bobrovnitchii, Microstructural modifications induced by hydrogen in a heat resistant steel type HP-45 with Nb and Ti additions. Journal of Alloys and Compounds, 2003. 356–357(0): p. 693-696.
61. Steel founders' Society of America, High alloy data sheets heat series. Steel castings handbook Supplement 9, 2004: p. 44.
62. C.M. Schillmoller, Solving high-temperature problems in oil refineries and petrochemical plants. Chemical Engineering, 1986: p. 83-87.
63. ASTM, Standard Test Methods for Tension Testing of Metallic Materials. ASTM E8: p. 14.