簡易檢索 / 詳目顯示

研究生: 黃學位
Huang, Hsueh-Wei
論文名稱: Supersymmetry Breaking and Phenomenology : Naturalness and Fine-tuning
超對稱破壞及其現象學 : 自然性與精細微調
指導教授: 張敬民
Cheung, Kingman
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 74
中文關鍵詞: 超對稱海市蜃樓階層自然性精細微調
外文關鍵詞: Supersymmetry, Mirage, Hierarchy, Naturalness, fine-tuning
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, we mainly focus on the understanding of little hierarchy problem in Minimal Supersymmetric Standard Model(MSSM). We study mirage and deflected mirage mediations of supersymmetry breaking. We investigate several parameter space and find some regions with small fine-tuning. It indicates that little hierarchy problem could be solved around these small fine-tuning region. For these regions, we also input the some experimental constraints such as Br(B −→ Xs)E>1.6GeV , muon magnetic moment, and the dark matter. Furthermore, the naturalness problem can be explained if the explicit model can be built around the regions we find and these two mediations should be interesting for the model buildings in string theory.


    在這篇論文中,我們主要了解在最小超對稱標準模型(MSSM)中的小階層問題(little hierarchy problem)。我們研究了兩個超對稱破壞的機制,分別是海市蜃樓傳達機制(mirage mediation)與偏轉海市蜃樓傳達機制(deflected mirage mediation)。我們研究了這些模型的參數空間,發現了一些符合實驗限制且又能解決小階層問題的理想參數空間。實驗限制方面,我們利用 ,渺子磁矩(muon magnetic moment)以及暗物質(dark matter)來限制參數空間。最後我們了解到假如一個模型可以建構在這些參數空間,則自然性問題就可以獲得解決,而且這樣的參數空間對於弦論模型的了解也是相當有趣的。

    1 Introduction 5 2 The Preliminary of Various Supersymmetry Breaking Models 9 2.1 The Soft Terms of 4D Supergravity . . . . . . . . . . . . . . . 9 2.2 Gauge Mediated SUSY Breaking . . . . . . . . . . . . . . . . 13 2.3 Anomaly Mediated SUSY Breaking . . . . . . . . . . . . . . . 16 2.4 KKLT and Moduli Mediated SUSY Breaking . . . . . . . . . . 17 2.4.1 Mass Scales of KKLT Theory . . . . . . . . . . . . . . 20 2.5 Mirage Mediated SUSY Breaking . . . . . . . . . . . . . . . . 21 2.5.1 Specified Models and Mirage Scale . . . . . . . . . . . 22 2.6 Deflected Mirage Mediated SUSY Breaking . . . . . . . . . . . 24 3 Minimal Supersymmetric Standard Model: Vacuum condi- tions and Experimental Constraints 29 3.1 Vacuum Conditions . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Experimental Constraints . . . . . . . . . . . . . . . . . . . . 30 3.2.1 b → s . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.2 gμ − 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.3 Higgs Boson Mass . . . . . . . . . . . . . . . . . . . . . 33 3.2.4 Dark Matters . . . . . . . . . . . . . . . . . . . . . . . 33 4 Hierarchy Problem, Cosmological Constant, Little hierarchy problem, μ problem, and Fine-tuning 35 5 Phenomena of SUSY Breaking 41 5.1 Phenomenology of Mirage Mediated SUSY Breaking . . . . . 41 5.2 Phenomenology of Deflected Mirage Mediated SUSY Breaking . . . . . . . . . . . . . . . . . . . . 50 6 Conclusions 57 A Conventions 59 A.1 Gauge Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 A.2 Neutralinos and Charginos . . . . . . . . . . . . . . . . . . . . 59 A.3 Higgs Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 A.4 CP-even Higgs-sfermion-sfermion Vertices . . . . . . . . . . . 60 B One-loop Tadpole Cancellation Conditions 63 B.1 RG Equations of MSSM at One Loop Oder . . . . . . . . . . . 66 C Notations for Randall, Martin, and Choi 71 C.1 Notations of Randall[60] . . . . . . . . . . . . . . . . . . . . . 71 C.2 Notations of Martin[50] . . . . . . . . . . . . . . . . . . . . . . 72 C.3 Notations of Choi[16] . . . . . . . . . . . . . . . . . . . . . . . 72

    [1] B. C. Allanach. SOFTSUSY: A C++ program for calculating supersymmetric
    spectra. Comput. Phys. Commun., 143:305–331, 2002, hepph/
    0104145.
    [2] B. C. Allanach, A. Djouadi, J. L. Kneur, W. Porod, and P. Slavich.
    Precise determination of the neutral Higgs boson masses in the MSSM.
    JHEP, 09:044, 2004, hep-ph/0406166.
    [3] Jonathan A. Bagger, Takeo Moroi, and Erich Poppitz. Anomaly mediation
    in supergravity theories. JHEP, 04:009, 2000, hep-th/9911029.
    [4] E. Barberio et al. Averages of b−hadron and c−hadron Properties at
    the End of 2007. 2008, 0808.1297.
    [5] Riccardo Barbieri and G. F. Giudice. Upper Bounds on Supersymmetric
    Particle Masses. Nucl. Phys., B306:63, 1988.
    [6] Vernon D. Barger, M. S. Berger, and P. Ohmann. The Supersymmetric
    particle spectrum. Phys. Rev., D49:4908–4930, 1994, hep-ph/9311269.
    [7] K. Becker, M. Becker, and J. H. Schwarz. String theory and M-theory:
    A modern introduction. Cambridge, UK: Cambridge Univ. Pr. (2007)
    739 p.
    [8] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov. Dark matter
    direct detection rate in a generic model with micrOMEGAs2.1. Comput.
    Phys. Commun., 180:747–767, 2009, 0803.2360.
    [9] Raphael Bousso and Joseph Polchinski. Quantization of four-form fluxes
    and dynamical neutralization of the cosmological constant. JHEP,
    06:006, 2000, hep-th/0004134.
    [10] P. Candelas, Gary T. Horowitz, Andrew Strominger, and Edward Witten.
    Vacuum Configurations for Superstrings. Nucl. Phys., B258:46–74,
    1985.
    74 BIBLIOGRAPHY
    [11] Philip Candelas and Xenia de la Ossa. MODULI SPACE OF CALABIYAU
    MANIFOLDS. Nucl. Phys., B355:455–481, 1991.
    [12] J. A. Casas, J. R. Espinosa, and H. E. Haber. The Higgs mass in the
    MSSM infrared fixed point scenario. Nucl. Phys., B526:3–20, 1998, hepph/
    9801365.
    [13] Z. Chacko, Markus A. Luty, Ann E. Nelson, and Eduardo Ponton.
    Gaugino mediated supersymmetry breaking. JHEP, 01:003, 2000, hepph/
    9911323.
    [14] Piotr H. Chankowski, John R. Ellis, and Stefan Pokorski. The finetuning
    price of LEP. Phys. Lett., B423:327–336, 1998, hep-ph/9712234.
    [15] K. Choi, A. Falkowski, Hans Peter Nilles, M. Olechowski, and S. Pokorski.
    Stability of flux compactifications and the pattern of supersymmetry
    breaking. JHEP, 11:076, 2004, hep-th/0411066.
    [16] Kiwoon Choi, Adam Falkowski, Hans Peter Nilles, and Marek Olechowski.
    Soft supersymmetry breaking in KKLT flux compactification.
    Nucl. Phys., B718:113–133, 2005, hep-th/0503216.
    [17] Kiwoon Choi, Kwang Sik Jeong, Tatsuo Kobayashi, and Ken-ichi Okumura.
    Little SUSY hierarchy in mixed modulus-anomaly mediation.
    Phys. Lett., B633:355–361, 2006, hep-ph/0508029.
    [18] Kiwoon Choi, Kwang Sik Jeong, Tatsuo Kobayashi, and Ken-ichi Okumura.
    TeV Scale Mirage Mediation and Natural Little SUSY Hierarchy.
    Phys. Rev., D75:095012, 2007, hep-ph/0612258.
    [19] Kiwoon Choi, Kwang Sik Jeong, Shuntaro Nakamura, Ken-Ichi Okumura,
    and Masahiro Yamaguchi. Sparticle masses in deflected mirage
    mediation. JHEP, 04:107, 2009, 0901.0052.
    [20] Kiwoon Choi, Kwang Sik Jeong, and Ken-ichi Okumura. Phenomenology
    of mixed modulus-anomaly mediation in fluxed string compactifications
    and brane models. JHEP, 09:039, 2005, hep-ph/0504037.
    [21] Kiwoon Choi, Jae Sik Lee, and Carlos Munoz. Supergravity radiative
    effects on soft terms and the mu term. Phys. Rev. Lett., 80:3686–3689,
    1998, hep-ph/9709250.
    [22] Sidney R. Coleman and Erick J. Weinberg. Radiative Corrections as the
    Origin of Spontaneous Symmetry Breaking. Phys. Rev., D7:1888–1910,
    1973.
    [23] G. Degrassi, P. Gambino, and G. F. Giudice. B –¿ X/s gamma in
    supersymmetry: Large contributions beyond the leading order. JHEP,
    12:009, 2000, hep-ph/0009337.
    [24] Michael Dine and Ann E. Nelson. Dynamical supersymmetry breaking
    at low-energies. Phys. Rev., D48:1277–1287, 1993, hep-ph/9303230.
    [25] Michael Dine, Ann E. Nelson, Yosef Nir, and Yuri Shirman. New
    tools for low-energy dynamical supersymmetry breaking. Phys. Rev.,
    D53:2658–2669, 1996, hep-ph/9507378.
    [26] Michael Dine, Ann E. Nelson, and Yuri Shirman. Low-energy dynamical
    supersymmetry breaking simplified. Phys. Rev., D51:1362–1370, 1995,
    hep-ph/9408384.
    [27] J. Dunkley et al. Five-Year Wilkinson Microwave Anisotropy Probe
    (WMAP) Observations: Likelihoods and Parameters from the WMAP
    data. Astrophys. J. Suppl., 180:306–329, 2009, 0803.0586.
    [28] Lisa L. Everett, Ian-Woo Kim, Peter Ouyang, and Kathryn M. Zurek.
    Deflected Mirage Mediation: A Framework for Generalized Supersymmetry
    Breaking. Phys. Rev. Lett., 101:101803, 2008, 0804.0592.
    [29] Lisa L. Everett, Ian-Woo Kim, Peter Ouyang, and Kathryn M. Zurek.
    Moduli Stabilization and Supersymmetry Breaking in Deflected Mirage
    Mediation. JHEP, 08:102, 2008, 0806.2330.
    [30] Toby Falk, Keith A. Olive, and Mark Srednicki. Heavy Sneutrinos as
    Dark Matter. Phys. Lett., B339:248–251, 1994, hep-ph/9409270.
    [31] Jonathan L. Feng and Takeo Moroi. Supernatural supersymmetry: Phenomenological
    implications of anomaly-mediated supersymmetry breaking.
    Phys. Rev., D61:095004, 2000, hep-ph/9907319.
    [32] S. J. Gates, Marcus T. Grisaru, M. Rocek, andW. Siegel. Superspace, or
    one thousand and one lessons in supersymmetry. Front. Phys., 58:1–548,
    1983, hep-th/0108200.
    [33] Tony Gherghetta, Gian F. Giudice, and James D. Wells. Phenomenological
    consequences of supersymmetry with anomaly-induced masses.
    Nucl. Phys., B559:27–47, 1999, hep-ph/9904378.
    [34] Steven B. Giddings, Shamit Kachru, and Joseph Polchinski. Hierarchies
    from fluxes in string compactifications. Phys. Rev., D66:106006, 2002,
    hep-th/0105097.
    [35] G. F. Giudice and R. Rattazzi. Extracting Supersymmetry-Breaking
    Effects from Wave- Function Renormalization. Nucl. Phys., B511:25–
    44, 1998, hep-ph/9706540.
    [36] G. F. Giudice and R. Rattazzi. Theories with gauge-mediated supersymmetry
    breaking. Phys. Rept., 322:419–499, 1999, hep-ph/9801271.
    [37] Gian F. Giudice, Markus A. Luty, Hitoshi Murayama, and Riccardo
    Rattazzi. Gaugino Mass without Singlets. JHEP, 12:027, 1998, hepph/
    9810442.
    [38] Mariana Grana. Flux compactifications in string theory: A comprehensive
    review. Phys. Rept., 423:91–158, 2006, hep-th/0509003.
    [39] Michael B. Green, J. H. Schwarz, and Edward Witten. SUPERSTRING
    THEORY. VOL. 1: INTRODUCTION. Cambridge, Uk: Univ. Pr. (
    1987) 469 P. ( Cambridge Monographs On Mathematical Physics).
    [40] Michael B. Green, J. H. Schwarz, and Edward Witten. SUPERSTRING
    THEORY. VOL. 2: LOOP AMPLITUDES, ANOMALIES AND PHENOMENOLOGY.
    Cambridge, Uk: Univ. Pr. ( 1987) 596 P. ( Cambridge
    Monographs On Mathematical Physics).
    [41] Brian R. Greene. String theory on Calabi-Yau manifolds. 1996, hepth/
    9702155.
    [42] Sergei Gukov, Cumrun Vafa, and Edward Witten. CFT’s from Calabi-
    Yau four-folds. Nucl. Phys., B584:69–108, 2000, hep-th/9906070.
    [43] Shamit Kachru, Renata Kallosh, Andrei D. Linde, and Sandip P.
    Trivedi. De Sitter vacua in string theory. Phys. Rev., D68:046005, 2003,
    hep-th/0301240.
    [44] Shamit Kachru, John Pearson, and Herman L. Verlinde. Brane/Flux
    Annihilation and the String Dual of a Non- Supersymmetric Field Theory.
    JHEP, 06:021, 2002, hep-th/0112197.
    [45] Alexander L. Kagan and Matthias Neubert. QCD anatomy of B –¿ X/s
    gamma decays. Eur. Phys. J., C7:5–27, 1999, hep-ph/9805303.
    [46] Gordon L. Kane and S. F. King. Naturalness implications of LEP results.
    Phys. Lett., B451:113–122, 1999, hep-ph/9810374.
    [47] Gordon L. Kane, Christopher F. Kolda, and James D. Wells. Calculable
    upper limit on the mass of the lightest Higgs boson in any perturbatively
    valid supersymmetric theory. Phys. Rev. Lett., 70:2686–2689, 1993, hepph/
    9210242.
    [48] Vadim S. Kaplunovsky and Jan Louis. Model independent analysis of
    soft terms in effective supergravity and in string theory. Phys. Lett.,
    B306:269–275, 1993, hep-th/9303040.
    [49] E. Komatsu et al. Five-YearWilkinson Microwave Anisotropy Probe Observations:
    Cosmological Interpretation. Astrophys. J. Suppl., 180:330–
    376, 2009, 0803.0547.
    [50] Stephen P. Martin. A Supersymmetry Primer. 1997, hep-ph/9709356.
    [51] Stephen P. Martin and James D. Wells. Muon anomalous magnetic
    dipole moment in supersymmetric theories. Phys. Rev., D64:035003,
    2001, hep-ph/0103067.
    [52] M. Misiak et al. The first estimate of B(anti-B –¿ X/s gamma) at
    O(alpha(s)**2). Phys. Rev. Lett., 98:022002, 2007, hep-ph/0609232.
    [53] Mikolaj Misiak. B -¿ Xs gamma - Current Status. Acta Phys. Polon.,
    B40:2987–2996, 2009, 0911.1651.
    [54] Hans Peter Nilles. Supersymmetry, Supergravity and Particle Physics.
    Phys. Rept., 110:1–162, 1984.
    [55] Damien M. Pierce, Jonathan A. Bagger, Konstantin T. Matchev, and
    Ren-jie Zhang. Precision corrections in the minimal supersymmetric
    standard model. Nucl. Phys., B491:3–67, 1997, hep-ph/9606211.
    [56] J. Polchinski. String theory. Vol. 1: An introduction to the bosonic
    string. Cambridge, UK: Univ. Pr. (1998) 402 p.
    [57] J. Polchinski. String theory. Vol. 2: Superstring theory and beyond.
    Cambridge, UK: Univ. Pr. (1998) 531 p.
    [58] Alex Pomarol and Riccardo Rattazzi. Sparticle masses from the superconformal
    anomaly. JHEP, 05:013, 1999, hep-ph/9903448.
    [59] Pierre Ramond. Dual Theory for Free Fermions. Phys. Rev., D3:2415–
    2418, 1971.
    [60] Lisa Randall and Raman Sundrum. Out of this world supersymmetry
    breaking. Nucl. Phys., B557:79–118, 1999, hep-th/9810155.
    [61] Riccardo Rattazzi, Alessandro Strumia, and James D. Wells. Phenomenology
    of deflected anomaly mediation. Nucl. Phys., B576:3–28,
    2000, hep-ph/9912390.
    [62] S. Sethi, C. Vafa, and Edward Witten. Constraints on low-dimensional
    string compactifications. Nucl. Phys., B480:213–224, 1996, hepth/
    9606122.
    [63] Sanjeev K. Soni and H. Arthur Weldon. Analysis of the Supersymmetry
    Breaking Induced by N=1 Supergravity Theories. Phys. Lett., B126:215,
    1983.
    [64] Gerard ’t Hooft. Under the spell of the gauge principle. Adv. Ser. Math.
    Phys., 19:1–683, 1994.
    [65] T. Teubner, K. Hagiwara, R. Liao, A. D. Martin, and Daisuke Nomura.
    Update of g-2 of the muon and Delta alpha. 2010, 1001.5401.
    [66] Prasanta K. Tripathy and Sandip P. Trivedi. Compactification with flux
    on K3 and tori. JHEP, 03:028, 2003, hep-th/0301139.
    [67] Cumrun Vafa. Evidence for F-Theory. Nucl. Phys., B469:403–418, 1996,
    hep-th/9602022.
    [68] J. Wess and J. Bagger. Supersymmetry and supergravity. Princeton,
    USA: Univ. Pr. (1992) 259 p.
    [69] Edward Witten. Non-Perturbative Superpotentials In String Theory.
    Nucl. Phys., B474:343–360, 1996, hep-th/9604030.
    [70] Edward Witten. On flux quantization in M-theory and the effective
    action. J. Geom. Phys., 22:1–13, 1997, hep-th/9609122.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE