研究生: |
盧志軒 Lu, Chih-Hsuan |
---|---|
論文名稱: |
在多重薄片晶體中產生高強度單包絡週期飛秒脈衝 Generation of intense near single-cycle pulses in multiple thin plates |
指導教授: |
孔慶昌
Kung, Andrew H. |
口試委員: |
許佳振
Hsu, Chia-Chen 楊尚達 Yang, Shang-Da 李明昌 Li, Ming-Chang 謝智明 Xiao, Chih-Ming 陳明彰 Chen, Ming-Chang |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 82 |
中文關鍵詞: | 超寬頻頻譜 、單發 、單週期 |
外文關鍵詞: | supercontinuum, isolated, single-cycle |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們採用一個新穎的技術multiple plate continuum(MPC)來產生一個高強度又穩定接近一個單週期脈衝. 這種方法是策略性將多個固態介質薄片晶體擺放在高能量雷射的焦點或接近焦點的位置, 而每個片子的厚度都使得光脈衝在離開薄片前不會產生一些不期望出現的效應而破壞掉脈衝的特性. 這也是第一次成功地在全固態系統中壓縮毫焦耳等級的超寬頻脈衝. 實驗中產生的八度音頻譜在-20 dB的強度水平下覆蓋範圍從420奈米到980奈米, 同時將輸入脈衝能量的64%轉換到超寬頻頻譜中. 之後我們利用由一對光柵和空間液晶調制器組成的壓縮相位系統來補償高階相位色散和細微調整殘留下來的頻率相位以成功製造2.8飛秒的單週期脈衝. 我們同時設計與使用客製化的啁啾鏡來提升我們單週期脈衝的轉換效率. 最後我們成功地利用壓縮好的脈衝應用在高階諧波產生高光子能量的連續頻譜這不僅僅是再一次的證明MPC產生的壓縮脈衝已經在數個週期脈衝區間, 也是一個能夠產生單發埃秒脈衝的應用方式.
Intense and stable near single-cycle pulses are generated by our novel technique of the multiple plate continuum (MPC). This is achieved by strategically placing several thin solid plates at or near the focused waist of a high-power laser pulse. The thickness of each plate is such that the optical pulse exits the plate before undesirable effects begin to take hold of the pulse. This is the first demonstration of mJ-level supercontinuum synthesis in an all solid-state system. The generated octave-spanning spectra that cover from 420nm to 980 nm at the -20 dB intensity level while converting as much as 64 % of the input pulse energy to the supercontinuum. A shaper-assisted 4-f phase compensator consisting of a grating pair and a spatial light modulator (SLM, JenOptik SLM640d) is used to offset the higher-order dispersions and fine-tune the residual spectral phases to produce single-cycle pulses with pulse duration of 2.8 fs. We increased the output efficiency of the near one-cycle pulse by implementing custom-designed chirped mirrors. The continuous spectrum obtained by high-order harmonic (HHG) generation with the compressed pulses serves not only as a second evidence to identify that our pulses are in few-cycle region but also as a good application for the production of an isolated attosecond pulse.
[1] M. Drescher, et. al., “Time-resolved atomic inner-shell spectroscopy”, Nature. 419, (2001)
[2] M. Hentschel, et. al., “Attosecond metrology”, Nature, 414, (2001)
[3] H. Shimosato, et.al., “Ultrabroadband detection of terahertz radiation from 0.1 to 100 THz with photoconductive antenna,” in Ultrafast Optics V (Springer, 2007), pp. 317–323.
[4] Tim Paasch-Colberg, et. al., “Sub-cycle optical control of current in a semiconductor: from the multiphoton to the tunneling regime”, Optica, 3, (2016)
[5] D. Hickstein, et al., “Non-collinear generation of angular isolated circularly polarized high harmonics”, Nature Photonics 9, 743 (2015).
[6] Pei-Chi Huang, et. al., “Isolated, Circularly Polarized, Attosecond Pulse Generation”, paper JTh4A.7, CLEO 2016.
[7] P. St. J. Russell, "Photonic crystal fibers," Science 299, 358–362 (2003)
[8] M. Nisoli, et.al., “Compression of high-energy laser pulses below 5 fs”, Opt. Lett. 22, 522–4 (1997)
[9] F. silva et.al., “multi-octave supercontinuum generation from mid-infrared filiamentaion in a bulk crystal”, NATURE COMMUNICATIONS | 3:807 | DoI: 10.1038/ncomms1816 (2012)
[10] F. J. Furch, et.al., “CEP-stable few- cycle pulses with more than 190 μJ of energy at 100 kHz from a non-collinear optical parametric amplifier,” Opt. Lett. 42, 2495–2498 (2017).
[11] Chih-Hsuan Lu et.al., “Generation of octave-spanning supercontinuum by Raman-assisted four-wave mixing in single- crystal diamond,” Opt. Express 22(4), 4075–4082 (2014)
[12] C.P. Hauri, et.al., “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation”, Appl. Phys. B 79, 673-677 (2004)
[13] T. Balciunas et.al., “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre”, NATURE COMMUNICATIONS | 6:6117 | DoI: 10.1038/ncomms7117 (2015)
[14] Chih-Hsuan Lu, et.al.,“Generation of intense supercontinuum in condensed media,” Optica 1, 400–406 (2014).
[15] R. R. Alfano, ed., The Supercontinuum Laser Source (Springer- Verlag, 1989)
[16] A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[17] S. L. Chin, Femtosecond Laser Filamentation, Vol. 55 of Springer Series on Atomic, Optical, and Plasma Physics (Springer, 2010).
[18] G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, CA, 2001)
[19] A. Wirth, et.al., “Synthesized light transients”, Science 334, 195–200 (2011).
[20] M. Th. Hassan, et.al., Invited Article : attosecond photonics : synthesisand control of light transients. Rev. Sci. Instrum. 83, 111301 (2012).
[21] M. Th. Hassan et.al., “Optical attosecond pulses and tracking the nonlinear response of bound electrons”, Nature, 530 (2016)
[22] Yu-Chen Cheng, Chih-Hsuan Lu, Yuan-Yao Lin, and A. H. Kung, “Supercontinuum generation in a multi-plate medium,” Opt. Express, 24, 7224-7231 (2016).
[23] Z. Cui, M. Chaturvedi, B. Tian, J. Ackert, F. C. Turner, and D. Strickland, “Spectral red-shifting of multi- frequency Raman orders,” Opt. Commun. 288, 118–121 (2013).
[24] J. He, J. Du, and T. Kobayashi, “Low-threshold and compact multi-colored femtosecond laser generated by
using cascaded four-wave mixing in a diamond plate,” Opt. Commun. 290, 132–135 (2013).
[25] F. Peter, “About refractive indices and absorption constants of the diamond 644-226 nm,” Z. Phys. 15, 358–368
(1923).
[26] R.Weigand,J.T.Mendonca,andH.M.Crespo,“Cascaded nondegenerate four-wave-mixing technique for high power single-cycle pulse synthesis in the visible and ultraviolet region,” Phys. Rev. A 79(6), 063838 (2009).
[27] M. Zhi, K. Wang, X. Hua, and A. V. Sokolov, “Pulse-shaper-assisted phase control of a coherent broadband
spectrum of Raman sidebands,” Opt. Lett. 36(20), 4032–4034 (2011).
[28] M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,”Phys. Rev. Lett. 82, 2394–2397 (1999).
[29] R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, 2002).
[30] M. Bellini and T. W. Hansch, “Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer, Opt. Lett. 25, 1049–1051 (2000).
[31] W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002).
[32] P. Dietrich, N. H. Burnett, M. Ivanov, P. B. Corkum, “High-harmonic generation and correlated two-electron multiphoton ionization with elliptically polarized light”, Phys. Rev. A. 50, R3585–R3588 (1994).
[33] T Popmintchev, et.al., “Supporting Information : Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum”. Proceedings of the National
Academy of Sciences, 106(26):10516–10521, 2009.
[34] Tenio Popmintchev, Ming-Chang Chen, Paul Arpin, Margaret M Murnane, and Henry C Kapteyn. “The attosecond nonlinear optics of bright coherent X-ray generation”. Nature Photonics, 4(12):822–832, 2010.