研究生: |
林雯翎 Lin, Wen-Ling |
---|---|
論文名稱: |
利用雙股胜肽與非共價作用力誘導膠原蛋白異源三股螺旋摺疊之探討 Study of using dimeric peptides and non-covalent interactions to induce the folding of collagen heterotrimers |
指導教授: |
洪嘉呈
Horng, Jia-Cherng |
口試委員: |
朱立岡
Chu, Li-Kang 杜玲嫻 Tu, Ling-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 112 |
中文關鍵詞: | 膠原蛋白 、胜肽 、雙股胜肽 、異源三股螺旋 、三股螺旋 |
外文關鍵詞: | triplehelix |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
膠原蛋白是人體中含量最多的蛋白質,若是其有不正常的變異或重構會導致一些疾病的生成。而AAB型的異源三股螺旋佔人體膠原蛋白的大多數,因此若要研究此類膠原蛋白變異所造成的疾病、或是對這個領域的生醫材料開發,勢必得發展出AAB型異源三股螺旋的模板作為研究對象。穩定三股螺旋的作用力有很多種,陽離子-π 作用力即為其中一種,而根據實驗室的過往研究,可知其對於穩定度有著不小的貢獻。
在第一部分中,藉由引入四個Tyr與Arg來抑制同源三股螺旋的生成,並透過不同比例的混合使其形成不同的異源三股螺旋,且藉由1H, 15N-HSQC光譜驗證其不同的組成,而這樣的設計也再次證實了陽離子-π作用力能有效促使膠原蛋白異源三股螺旋之摺疊。
第二、三部分為第一部分的延伸,希望藉由雙股胜肽的結構提升三股螺旋的生成量與穩定度,再將其應用至胜肽的修復。從雙股胜肽c5ss與c6的比較可以得知,連接點的長度不同會影響三股螺旋結構的單一性與溶解度,就Lys與Cys來說,Cys為能夠進行預先組織成較適當距離之胺基酸。從c5ss與c7ss的比較可以發現,以Cys作為雙股結構的連接點確實皆可以提升預先組織的效率,而不同的連接環境帶來的是對於穩定度的影響,較暴露於溶液中的環境則會對溶解度帶來影響。
在胜肽修復方面,就以明顯有受到修復的[1]c7ss[1]B1_Sar來說,雙股結構確實能幫助第三股的接近,使其有機會生成三股螺旋,然而cation-π 作用力於此時也扮演重要的角色,幫助三股螺旋的穩定纏繞。在此也發現Ala比起Sar,立障所導致的不穩定,對於結構來說是較為致命的置換。
Collagen is the most abundant protein in the human body, of which type I is the majority. Type I collagen is an AAB-type heterotrimer. Many human diseases including cancers and fibrosis are associated with abnormal remodeling and mutation of collagen, making heterotrimers better mimics for studying collagen structures and developing related biomedical materials. In our previous studies, cation-π interaction was found to serve as a stabilizing force in the collagen triple helix. In the first part of this study, four arginine and four tyrosine residues were introduced in a single collagen-mimetic peptide (CMP), which successfully avoided the folding of homotrimers and only generated a single composition of heterotrimer. This results validated again that cation-π interactions can be used to induce formation of heterotrimers. In the second and third parts of this study, we further installed cysteine and lysine into these peptides to form dimeric CMPs through a covalent bond as an attempt to aid triple-association by preorganizing the linked strands into a PPII-like structure. From the comparison of dimeric CMPs, c5ss and c6, we found that the linker between two strands in a dimeric peptide would affect the unity and solubility of the triple helix structure, and using disulfide bond was a better strategy to tether two strands. From the comparison of dimeric CMPs, c5ss and c7ss, we found that the residues near the tethered point would affect the stability of the triple helix, and the residues exposed to solvent would affect the solubility. As to refolding a triple helix via dimeric peptides, our results indicated that dimeric peptides could help the third strand to approach, and cation-π interactions also played an important role helping heterotrimers fold. We also found that compared to N-methyl glycine (sarcrosine) , alanine caused a more destructive mutation to the collagen structure.
1. Shoulders, M. D.; Raines, R. T., Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929-958.
2. Pei, Y.; Jordan, K. E.; Xiang, N.; Parker, R. N.; Mu, X.; Zhang, L.; Feng, Z.; Chen, Y.; Li, C.; Guo, C.; Tang, K.; Kaplan, D. L., Liquid-exfoliated mesostructured collagen from the bovine achilles tendon as building blocks of collagen membranes. ACS Appl. Mater. Interfaces 2021, 13, 3186-3198.
3. Liu, X.; Zheng, C.; Luo, X.; Wang, X.; Jiang, H., Recent advances of collagen-based biomaterials: Multi-hierarchical structure, modification and biomedical applications. Mater. Sci. Eng. C 2019, 99, 1509-1522.
4. Chiang, C.-H.; Horng, J.-C., Cation−π interaction induced folding of AAB-type collagen heterotrimers. J. Phys. Chem. B 2016, 120, 1205-1211.
5. Cutini, M.; Bocus, M.; Ugliengo, P., Decoding collagen triple helix stability by means of hybrid DFT simulations. J. Phys. Chem. B 2019, 123, 7354-7364.
6. Pauling, L.; Corey, R. B., The Structure of fibrous proteins of the collagen-gelatin group. Proc. Natl. Acad. Sci. U.S.A. 1951, 37, 272-281.
7. Ramachandran, G. N.; Kartha, G., Structure of collagen. Nature 1955, 176, 593-595.
8. Ramachandran, G. N.; Kartha, G., Structure of collagen. Nature 1954, 174, 269-270.
9. Rich, A.; Crick, F. H. C., The molecular structure of collagen. J. Mol. Biol. 1961, 3, 483-IN4.
10. Okuyama, K.; Xu, X.; Iguchi, M.; Noguchi, K., Revision of collagen molecular structure. J. Pept. Sci. 2006, 84, 181-191.
11. Bella, J.; Eaton, M.; Brodsky, B.; Berman, H. M., Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science 1994, 266, 75-81.
12. Okuyama, K.; Nagarajan, V.; Kamitori, S., 7/2-Helical model for collagen - Evidence from model peptides. Proc. Indian Acad. Sci. Chem. Sci. 1999, 111, 19-34.
13. Ward, L. M.; Lalic, L.; Roughley, P. J.; Glorieux, F. H., Thirty-three novel COL1A1 and COL1A2 mutations in patients with osteogenesis imperfecta types I-IV. Hum. Mutat. 2001, 17, 434-434.
14. Lin, Z.; Zeng, J.; Wang, X., Compound phenotype of osteogenesis imperfecta and Ehlers-Danlos syndrome caused by combined mutations in COL1A1 and COL5A1. Biosci. Rep. 2019, 39, BSR20181409.
15. Brodsky, B.; Ramshaw, J. A. M., The collagen triple-helix structure. Matrix Biol. 1997, 15, 545-554.
16. Hinderaker, M. P.; Raines, R. T., An electronic effect on protein structure. Protein Sci. 2003, 12, 1188-1194.
17. Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19-25.
18. Pinheiro, S.; Soteras, I.; Gelpí, J. L.; Dehez, F.; Chipot, C.; Luque, F. J.; Curutchet, C., Structural and energetic study of cation–π interactions in proteins. Phys. Chem. Chem. Phys. 2017, 19, 9849-9861.
19. Ma, J. C.; Dougherty, D. A., The cation−π interaction. Chem. Rev. 1997, 97, 1303-1324.
20. Mahadevi, A. S.; Sastry, G. N., Cation−π interaction: Its role and relevance in chemistry, biology, and material science. Chem. Rev. 2013, 113, 2100-2138.
21. Rao, J. S.; Zipse, H.; Sastry, G. N., Explicit solvent effect on cation−π interactions: A first principle investigation. J. Phys. Chem. B 2009, 113
22. Mecozzi, S.; West, A. P.; Dougherty, D. A., Cation−π interactions in simple aromatics: Electrostatics provide a predictive tool. J. Am. Chem. Soc. 1996, 118, 2307-2308.
23. Dougherty, D. A., Cation-π interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp. Science 1996, 271, 163-168.
24. Mecozzi, S.; West, A. P.; Dougherty, D. A., Cation-pi interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 10566-10571.
25. Burley, S. K.; Petsko, G. A., Amino-aromatic interactions in proteins. FEBS Lett. 1986, 203, 139-143.
26. Mitchell, J. B. O.; Nandi, C. L.; Ali, S.; McDonald, I. K.; Thornton, J. M.; Price, S. L.; Singh, J., Amino/aromatic interactions. Nature 1993, 366, 413-413.
27. Chen, C.-C.; Hsu, W.; Hwang, K.-C.; Hwu, J. R.; Lin, C.-C.; Horng, J.-C., Contributions of cation–π interactions to the collagen triple helix stability. Arch. Biochem. Biophys. 2011, 508, 46-53.
28. Chen, C.-C.; Hsu, W.; Kao, T.-C.; Horng, J.-C., Self-assembly of short collagen-related peptides into fibrils via cation−π interactions. Biochemistry 2011, 50, 2381-2383.
29. Gauba, V.; Hartgerink, J. D., Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions. J. Am. Chem. Soc. 2007, 129, 2683-2690.
30. Gauba, V.; Hartgerink, J. D., Surprisingly high stability of collagen ABC heterotrimer: Evaluation of side chain charge pairs. J. Am. Chem. Soc. 2007, 129, 15034-15041.
31. Chiang, C.-H.; Fu, Y.-H.; Horng, J.-C., Formation of AAB-type collagen heterotrimers from designed cationic and aromatic collagen-mimetic peptides: Evaluation of the C-terminal cation−π interactions. Biomacromolecules 2017, 18, 985-993.
32. Chen, Y.-S.; Chen, C.-C.; Horng, J.-C., Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide. Biopolymers 2011, 96, 60-68.
33. 姚子柔. 碩士論文. 國立清華大學, 2019.
34. 林佑承. 碩士論文. 國立清華大學, 2020.
35. Zheng, H.; Lu, C.; Lan, J.; Fan, S.; Nanda, V.; Xu, F., How electrostatic networks modulate specificity and stability of collagen. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 6207-6212.
36. Tanrikulu, I. C.; Raines, R. T., Optimal interstrand bridges for collagen-like biomaterials. J. Am. Chem. Soc. 2014, 136, 13490-13493.
37. Tanrikulu, I. C.; Westler, W. M.; Ellison, A. J.; Markley, J. L.; Raines, R. T., Templated collagen “double helices” maintain their structure. J. Am. Chem. Soc. 2020, 142, 1137-1141.
38. Brinckmann, J., Collagens at a Glance. In Collagen: Primer in Structure, Processing and Assembly, Brinckmann, J.; Notbohm, H.; Müller, P. K., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2005; pp 1-6.
39. Bonnans, C.; Chou, J.; Werb, Z., Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786-801.
40. Page-McCaw, A.; Ewald, A. J.; Werb, Z., Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 2007, 8, 221-233.
41. Wahyudi, H.; Reynolds, A. A.; Li, Y.; Owen, S. C.; Yu, S. M., Targeting collagen for diagnostic imaging and therapeutic delivery. J. Control. Release 2016, 240, 323-331.
42. Kessler, J. L.; Li, Y.; Fornetti, J.; Welm, A. L.; Yu, S. M., Enrichment of collagen fragments using dimeric collagen hybridizing peptide for urinary collagenomics. J. Proteome Res. 2020, 19, 2926-2932.
43. Hwang, J.; Huang, Y.; Burwell, T. J.; Peterson, N. C.; Connor, J.; Weiss, S. J.; Yu, S. M.; Li, Y., In situ imaging of tissue remodeling with collagen hybridizing peptides. ACS Nano 2017, 11, 9825-9835.
44. Li, Y.; Yu, S. M., Targeting and mimicking collagens via triple helical peptide assembly. Curr. Opin. Chem. Biol. 2013, 17, 968-975.
45. Li, Y.; Foss, C. A.; Summerfield, D. D.; Doyle, J. J.; Torok, C. M.; Dietz, H. C.; Pomper, M. G.; Yu, S. M., Targeting collagen strands by photo-triggered triple-helix hybridization. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 14767-14772.
46. Takita, K. K.; Fujii, K. K.; Kadonosono, T.; Masuda, R.; Koide, T., Cyclic peptides for efficient detection of collagen. ChemBioChem 2018, 19, 1613-1617.
47. https://www.newton.com.tw/wiki/HATU/535970. (accessed on 2021/07/09)
48. Santos, A.; Sugon Jr, Q.; McNamara, D., Polarization ellipse and Stokes parameters in geometric algebra. J Opt Soc Am A Opt Image Sci Vis. 2012, 29, 89-98.
49. Marion, D., An Introduction to biological NMR spectroscopy. Mol. Cell. Proteom. 2013, 12, 3006-3025.
50. Gill, P.; Moghadam, T. T.; Ranjbar, B., Differential scanning calorimetry techniques: applications in biology and nanoscience. J. Biomol. Tech. 2010, 21, 167-193.