簡易檢索 / 詳目顯示

研究生: 葉勝凱
Yeh, Sheng-Kai
論文名稱: 利用CMOS-MEMS微型線圈實現新型具無線傳輸能力之電感式觸覺感測器
Design and Implementation of a Novel CMOS-MEMS Inductive-type Tactile Sensor with Wireless Sensing Potential
指導教授: 方維倫
Fang, Wei-Leun
口試委員: 李昇憲
Li, Sheng-Shian
劉育嘉
Liu, Yu-Chia
陳世叡
Chen, Shih-Jui
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 118
中文關鍵詞: CMOS-MEMS微型平面線圈電感式觸覺感測器高分子填充技術高分子變形膜層
外文關鍵詞: CMOS-MEMS, Inductive-type tactile sensor, Micro planar coil, Deformable polymer layer, Polymer filler
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將微型線圈應用於觸覺感測器上,主要感測外界施力大小的為微型感測線圈,當外界負載不同時,由於微型線圈與金屬施力介面間產生距離的變化,再利用平面線圈(Planar coil)產生的電感變化以解析外界施力大小。本研究使用CMOS-MEMS 1P6M標準製程平台實現元件,並利用CMOS-MEMS極佳的電性繞線能力使線圈在相同面積下繞線更具優勢,再藉由金屬濕蝕刻定義凹槽以及高分子的填入產生高分子變形膜層,初步透過有限單元法(FEM, Finite Element Model)分析驗證訊號變化量,製作完成後再量測此元件在觸覺感測應用上之性能以及無線傳輸能力。元件在使用導磁金屬探頭驗證可行性後,使用高分子簡易封裝技術封裝導磁鋼球受力結構於其上,並且利用不同的量測規劃比較元件在不同量測環境、情況下的性能表現,最後決定觸覺感測器之規格、特性。


    This study presents a novel inductive-type tactile sensor with deformable polymer layer. The sensing principle of the structure is mainly dominated by the distance between sensing coil and metal contact interface. After applying the load on the metal contact interface, the polymer filler above the sensing coil would deform which decrease the distance between sensing coil and metal contact interface. Hence, the inductance of the planar coil would change due to the change of magnetic flux. CMOS-MEMS 1P6M standard process is utilized because of its great electrical routing ability, therefore, we can have high compact coil at specific area. By designing the sensing coil, controlling the thickness and varying the mechanical property of polymer, different sensitivity and sensing range of the tactile sensor can be derived. The preliminary simulation result shows the feasibility of such idea. The measurements of the sensor are carried out after fabrication to verify the sensing mechanism, and the wireless sensing capability is also demonstrated. Furthermore, the performance of the device integrated with the chrome steel ball is implemented. After the characterization of the basic performance of the inductive tactile sensor, the other testing conditions are fully discussed in the thesis. Finally, the specification of the device is presented.

    誌謝 I 中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 表目錄 XI 第1章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 3 1-3-1 感測機制介紹 4 1-3-2 線圈感測方式以及應用 8 1-3-3 互補式金屬氧化物製程平台 10 1-3 研究目標 11 1-4 全文架構 13 第2章 電感式觸覺感測器設計規劃 30 2-1 元件設計概念 30 2-1-1 觸覺感測器特性規格 30 2-1-2 微型觸覺感測器之問題討論 32 2-1-3 電感式觸覺感測器設計概念 35 2-1-4 元件設計規格 37 2-2 有限元素分析與訊號計算 39 2-2-1 線圈電感性能分析 39 2-2-2 模擬高分子變形 44 2-3 觸覺感測器之性能規格評估 45 第3章 元件製程策劃與基本特性量測 58 3-1 晶片本體後製程及元件之簡易封裝 58 3-2 元件製程結果 61 3-3 量測結果 63 3-3-1 元件初步量測以及無線能力驗證 63 3-3-2 元件整合力傳遞結構量測 65 3-4 小結-元件製作及基本特性驗證 67 第4章 元件特性延伸討論與穩定性量測 79 4-1 元件特性延伸量測 79 4-2 元件穩定性量測結果 83 4-3 小結-元件特性延伸討論量測 88 第5章 結論與未來工作 102 5-1 元件之規格整理、設計考量 102 5-2 未來工作、延伸應用 103 參考文獻 113

    [1] www.pressureprofile.com/
    [2] www.tekscan.com/
    [3] www.touchence.jp/en/
    [4] www.te.com/usa-en/home
    [5] www.interlinkelectronics.com
    [6] sensing.honeywell.com/
    [7] sensitronics.com/
    [8] syntouchllc.com/
    [9] optoforce.com/
    [10] www.apple.com/tw/iphone/
    [11] www.patentlyapple.com/patently-apple/displays-lcdtouch/
    [12] J.-H. Kim, W.-C. Choi, H.-J. Kwon, and D.-I. Kang, “Development of tactile sensor with functions of contact force and thermal sensing for attachment to intelligent robot finger tip,” IEEE Sensors, Daegu, Korea, pp 1468-1472, 2006.
    [13] G. Vásárhelyi, M. Ádám, É. Vázsonyi, Z. Vízváry, A. Kis, I. Bársony, and C. Dücsõ, “Characterization of an integrable single-crystalline 3-D tactile sensor,” IEEE Sensors Journal, vol. 6, pp 928-934, 2006.
    [14] T.-V. Nguyen, B.-K. Nguyen, H. Takahashi, K. Matsumoto, and I. Shimoyama, “High-sensitivity triaxial tactile sensor with elastic microstructures pressing on piezoresistive cantilevers,” Sensors and Actuators A, vol. 215, pp 167-175, 2014.
    [15] E.-S. Hwang, J.-h. Seo, and Y.-J. Kim, “A polymer-based flexible tactile sensor for both normal and shear load detections and its application for robotics,” Journal of Microelectromechanical Systems, vol. 16, pp 556-563, 2007.
    [16] C.-C. Wen, and W. Fang, “Tuning the sensing range and sensitivity of three axes tactile sensors using the polymer composite membrane,” Sensors and Actuators A, vol. 145, pp 14-22, 2008.
    [17] H. Takahashi, A. Nakaia, N. Thanh-Vinh, K. Matsumoto, and I. Shimoyama, “A triaxial tactile sensor without crosstalk using pairs of piezoresistive beams with sidewall doping,” Sensors and Actuators A, vol. 199, pp 43-48, 2013.
    [18] M. A´da´m, T. Moh´acsy, P. J´on´as, C. D¨ucs˝o,´E. V´azsonyi, and I. B´arsony, “CMOS integrated tactile sensor array by porous Si bulk micromachining,” Sensors and Actuators A, vol. 142, pp 192-195, 2008.
    [19] H.-K. Lee, J. Chung, S.-I. Chang, and E. Yoon, “Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors,” Journal of Microelectromechanical Systems, vol. 17, pp 934-942, 2008.
    [20] G. Liang, Y. Wang, D. Mei, K. Xi, and Z. Chen, “Flexible capacitive tactile sensor array with truncated pyramids as dielectric layer for three-axis force measurement,” Journal of Microelectromechanical Systems, vol. 24, pp 1510-1519, 2015.
    [21] H.-K. Lee, S.-I. Chang, and E. Yoon, “Dual-mode capacitive proximity sensor for robot application: implementation of tactile and proximity sensing capability on a single polymer platform using shared electrodes,” IEEE Sensors Journal, vol. 9, pp 1748-1755, 2009.
    [22] Y. Hata, Y. Nonomura, H. Funabashi, T. Akashi, M. Fujiyoshi, Y. Omura, T. Nakayama, U. Yamaguchi, H. Yamada, S. Tanaka, H. Fukushi, M. Muroyama, M. Makihata, and M. Esashi, “An SOI tactile sensor with a quad seesaw electrode for 3-axis complete differential detection,” IEEE MEMS, San Francisco, CA, pp 709-712, 2014.
    [23] Y.-C. Liu, C.-M. Sun, L.-Y. Lin, M.-H. Tsai, and W. Fang, “Development of a CMOS-based capacitive tactile sensor with adjustable sensing range and sensitivity using polymer fill-in,” Journal of Microelectromechanical Systems, vol. 20, pp 119-127, 2011.
    [24] W.-C. Lai, and W. Fang, “Novel two-stage CMOS-MEMS capacitive-type tactile-sensor with ER-fluid fill-in for sensitivity and sensing range enhancement,” Transducers, Anchorage, Alaska, pp 1175-1178, 2015.
    [25] S. Wattanasarn, K. Noda, K. Matsumoto, and I. Shimoyama, “3D flexible tactile sensor using electromagnetic induction coils,” IEEE MEMS, Paris, France, pp 488-491, 2012.
    [26] N. Futai, N. Futai, K. Matsumoto, I. Shimoyama, “A flexible micromachined planar spiral inductor for use as an artificial tactile mechanoreceptor,” Sensors and Actuators A, vol. 111, pp 293-303, 2004.
    [27] H.-C. Chang, W.-L Sung, H.-S. Hsieh, J.-H. Wen, C.-C. Fu, S.-C. Liao, C.-H. Lai, W.-C. Lai, C.-H. Chang, C.-P. Chang, C.-H. Chen, and W. Fang, “Magnetostrictive type tactile sensor based on metal embedded polymer architecture,” IEEE MEMS, San Francisco, CA, pp 1189-1192, 2014.
    [28] A.-B. Amor, T. Budde, and, H.-H. Gatzen, “A magnetoelastic microtransformer-based microstrain gauge,” Sensors and Actuators A, vol. 129, pp 41-44, 2006.
    [29] en.wikipedia.org/wiki/Gauge_factor
    [30] M. G. Kisic, N. V. Blaz, K. B. Babkovic, A. M. Maric, G. J. Radosavljevic, L. D. Zivanov, and M. S. Damnjanovic, “Passive Wireless Sensor for Force Measurements,” IEEE Transactions on Magnetics, vol. 51, NO. 1, 2015.
    [31] P.-H. Lo, C. Hong, S.-C. La, and W. Fang, “Implementation of inductive proximity sensor using nanoporous anodic aluminum oxide layer,” Transducers, Beijing, China, pp 1871-1874, 2011.
    [32] P. Rombach, H. Steiger, and, W. Langheinrich “Planar coils with ferromagnetic yoke for a micromachined torque sensor,” Journal of Micromechanics and Microengineering, vol. 5, pp 136-138, 1995.
    [33] G. K. Fedder, “CMOS-based sensors,” IEEE Sensors, Irvine, CA, pp 125-128, 2005.
    [34] M.-H. Tsai, C.-M. Sun, Y.-C. Liu, C. Wang, and, W. Fang “Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors,” Journal of Micromechanics and Microengineering, vol. 19, 10501, 2009.
    [35] C.-L. Cheng, H.-C. Chang, C.-I. Chang, Y.-T. Tuan, and W. Fang, “Mechanical force-displacement transduction structure for performance enhancement of CMOS-MEMS pressure sensor,” IEEE MEMS, San Francisco, CA, pp 757-760, 2014.
    [36] H.-C. Chang, S.-C. Liao, C.-L. Cheng, J.-H. Wen, H.-S. Hsieh, C.-H. Lai, and W. Fang, “Wireless magnetostrictive type inductive sensing CMOS-MEMS pressure sensors,” IEEE MEMS, Shanghai, China, pp 218-221, 2016.
    [37] C. S. Schneider, P. Y. Cannell, and, K. T. Watts, “Magnetoelasticity for large stresses,” IEEE Transactions on Magnetics, vol. 28, pp 2626-2631, 1992.
    [38] T. Okatani, H. Takahashi, K. Noda, T. Takahata, K. Matsumoto, and I. Shimoyama, “A tactile sensor for simultaneous measurement of applied forces and friction coefficient,” IEEE MEMS, Shanghai, China, pp 862-865, 2016.
    [39] R. S. Dahiya, and, M. Valle, Robotic tactile sensing: technologies and system. Springer Science & Business Media, 2012.
    [40] R. Balasubramanian, and, V. J. Santos, The human hand as an inspiration for robot hand development. Vol. 95, Springer Science & Business Media, 2014.
    [41] C. H. Ahn, and M. G. Allen, “Micromachined planar inductors on silicon wafers for MEMS applications,” IEEE Transactions on Industrial Electronics, vol. 45, pp 866-876, 1998.
    [42] D. Wang, C. Nordman, Z. Qian, J. M. Daughton, and J. Myers, “Magnetostriction effect of amorphous CoFeB thin films and application in spin-dependent tunnel junctions,” Journal of applied physics, vol. 97, 10C906, 2005.
    [43] K. Finkenzeller, RFID handbook: fundamentals and applications in contactless smart cards, radio frequency identification and near-field communication. John Wiley & Sons, 2010.
    [44] S. Musunuri, P. L. Chapman, J. Zou, and C. Liu, “Design issues for monolithic DC–DC converters,” IEEE Transactions on Power Electronics, vol. 20, pp 639-649, 2005.
    [45] S. S. Mohan, M. M. Hershenson, S. P. Boyd, and T. H. Lee, “Simple accurate expressions for planar spiral inductances,” IEEE Journal of Solid-State Circuits, vol. 34, pp 1419-1424, 1999.
    [46] hyperphysics.phy-astr.gsu.edu/hbase/magnetic/tracir.html
    [47] https://www.ddmnovastar.com/pick-and-place/automated-systems/ls60v-pick-and-place-machine-with-vision
    [48] http://www.tecnisco.co.jp/en/
    [49] C. P. Yue, S. S. Wong, “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC’s,” IEEE Journal of solid-state circuits, vol. 33, pp 743-752, 1998.
    [50] I. D. Johnston, D. K. McCluskey, C. K. L. Tan and M. C. Tracey “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” Journal of Micromechanics and Microengineering, vol. 24, 035017, 2014.
    [51] B. D. Cullity, and, C.D. Graham, Introduction to magnetic materials. John Wiley & Sons, 2011.

    QR CODE