研究生: |
葉宸廷 Yeh, Chen-Ting |
---|---|
論文名稱: |
未經相機校準下之立體影像校正及光學失真修正 Stereo Rectification with Distortion Correction for Uncalibrated Cameras |
指導教授: |
賴尚宏
Lai, Shang-Hong |
口試委員: |
莊永裕
Chuang, Yung-Yu 林惠勇 Lin, Huei-Yung 王鈺強 Wang, Yu-Chiang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 49 |
中文關鍵詞: | 立體影像校正 、光學失真修正 、未經相機校準 |
外文關鍵詞: | stereo rectification, epipolar rectification, image rectification, uncalibrated |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,我們提出了一個以整合型的最佳化框架同時進行立體影像校正及光學失真修正的新穎的演算法。雙眼立體視覺依賴校正後的影像組合來從兩張影像中的對應點估測深度資訊,也就是立體匹配演算法。雖然許多研究專注於立體匹配演算法並且也得到不錯的結果,立體影像校正仍是一個重要但卻被忽視的主題來產生必要的校正影像。
在多解析立體視覺系統中,立視影像校正更顯得重要。這個系統由兩個不同的兩個鏡頭組合成一個低成本的立體相機組。在這個系統裡得到的影像組合,不同的影像品質、雜訊及光學失真程度都可能導致深度估測錯誤。
考慮不同的內部相機參數與外部參數,一組單應性轉換可以由極線限制估測出來。光學失真也由除法失真修正模型和維度提升的方法加以考慮。使用非線性最佳化的架構配合穩健估測函式可以同時達到這兩個目標。
在合成與真實影像的實驗結果中,所提出的演算法不只在避免校正失真的情況下有效地減少了校正錯誤,也能對影像中的光學失真現象加以修正。此外,我們的實驗結果顯示提出的方法可以引導出更精確的視差圖估測結果。
In this thesis, we propose a novel algorithm to simultaneously solve the stereo rectification and distortion correction problems in an integrated optimization framework. Stereo vision estimate depth information from a rectified image pair by finding point correspondences across images, i.e. stereo matching. Previous researches focused on developing accurate stereo matching methods. However, stereo rectification has been a crucial but overlooked topic to generate rectified images for stereo matching.
The stereo rectification is especially important when the stereo images are acquired by different cameras with considerable lens distortions, which may lead to errors in image rectification and depth estimation.
Considering different intrinsic and extrinsic parameters for stereo cameras, rectification homography transforms for both images are estimated based on the epipolar constraints. Lens distortion is also included into the generalized epipolar constraints by employing a division undistortion model and a lifting technique. By using the robust estimation formulation, we can solve the stereo rectification and distortion correction problems simultaneously in a unified framework.
Experimental results on various synthetic and real images are shown to demonstrate that the proposed algorithm not only effectively reduces the rectification errors but also corrects the lens distortion in the stereo images. In addition, our experiments show that the proposed stereo rectification algorithm leads to more accurate disparity estimation results.
[1] J. Barreto, J. Roquette, P. Sturm, and F. Fonseca, Automatic camera calibration applied to medical endoscopy, Proc. British Machine Vision Conf. (BMVC), London, U.K., Sep. 7–10, 2009.
[2] J.P. Barreto and K. Daniilidis, Fundamental Matrix for Cameras with Radial Distortion. IEEE International Conference on Computer Vision (ICCV), 2005.
[3] C. Bra¨uer-Burchardt and K. Voss, A New Algorithm to Correct Fish-Eye and Strong Wide-Angle-Lens-Distortion from Single Images, IEEE International Conference on Image Processing (ICIP), pp. 225-228, 2001.
[4] J. H. Brito, R. Angst, K. Koser, and M. Pollefeys. Radial distortion self-calibration. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013.
[5] M. Byrod, Z. Kukelova, K. Josephson, T. Pajdla, and K. Astrom. Fast and robust numerical solutions to minimal problems for cameras with radial distortion. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008.
[6] D. Claus and A. W. Fitzgibbon. A rational function lens distortion model for general cameras. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005.
[7] F. Devernay and O. Faugeras. Straight lines have to be straight. Machine Vision and Applications, 13:14–24, 2001.
[8] M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. IEEE Transactions on Image Processing, 22(8):3260–3270, 2013.
[9] A. W. Fitzgibbon. Simultaneous linear estimation of multiple view geometry and lens distortion. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2001.
[10] A. Fusiello and L. Irsara. Quasi-euclidean uncalibrated epipolar rectification. International Conference on Pattern Recognition, 2008.
[11] A. Fusiello, E. Trucco, and A. Verri. A compact algorithm for rectification of stereo pairs. Machine Vision and Applications, 12(1):16–22, 2000.
[12] C. Geyer and K. Daniilidis. Conformal rectification of omnidirectional stereo pairs. Workshop on Omnidirectional Vision and Camera Networks (Omnivis), 2003.
[13] J. Gluckman and S. K. Nayar. Rectifying transformations that minimize resampling effects. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2001.
[14] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cambridge university press, 2003.
[15] R. I. Hartley. Theory and practice of projective rectification. International Journal of Computer Vision (IJCV), 35(2):115–127, 1999.
[16] J. Heller and T. Pajdla. Stereographic rectification of omnidirectional stereo pairs. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009.
[17] F. Isgro and E. Trucco. Projective rectification without epipolar geometry. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1999.
[18] S. B. Kang. Radial distortion snakes. IEICE Transactions on Information and Systems, 84(12):1603–1611, 2001.
[19] Y. Kuang, J. E. Solem, F. Kahl, and K. Astrom. Minimal solvers for relative pose with a single unknown radial distortion. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
[20] S. Kumar, C. Micheloni, C. Piciarelli, and G. L. Foresti. Stereo rectification of uncalibrated and heterogeneous images. Pattern Recognition Letters, 31(11):1445–1452, 2010.
[21] C. Loop and Z. Zhang. Computing rectifying homographies for stereo vision. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1999.
[22] M. Lourenc¸o, J. P. Barreto, and F. Vasconcelos. srd-sift: Keypoint detection and matching in images with radial distortion. IEEE Trans. on Robotics, 28(3):752–760, 2012.
[23] D. G. Lowe. Object recognition from local scale-invariant features. IEEE International Conference on Computer Vision (ICCV), 1999.
[24] J. Mallon and P. F. Whelan. Projective rectification from the fundamental matrix. Image and Vision Computing, 23(7):643–650, 2005.
[25] R. Strand and E. Hayman. Correcting radial distortion by circle fitting. Proc. British Machine Vision Conf. (BMVC), 2005.
[26] K. Zhang, Y. Fang, D. Min, L. Sun, S. Yang, S. Yan, and Q. Tian. Cross-scale cost aggregation for stereo matching. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
[27] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 22(11):1330–1334, 2000.