研究生: |
林澧亦 Lin, Li Yi |
---|---|
論文名稱: |
高速磨削應用於碳化矽之研究 A study on High-Speed Grinding of Silicon Carbide |
指導教授: |
左培倫
Tso, Pei Lum |
口試委員: |
趙崇禮
鄧建中 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 高速磨削 、難削材料 、切屑構形 、碳化矽 |
外文關鍵詞: | High Speed Grinding, Difficult-to-cut Materials, Silicon Carbide, Chip formation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去十年元件製造商已經證實碳化矽寬能隙材料可以為下一代功率半導體元件的發展帶來多重優勢。而目前因為碳化矽高硬度高脆性的關係使加工困難,造成價格昂貴而無法商業化。本文希望藉由高速磨削可以解決碳化矽難削材加工困難的問題,並且以磨粒軌跡為切入點分析高速磨削與傳統磨削的差異,建立高速磨削的幾何切屑構形理論,由此理論說明高速磨削適用於難削材加工之原因。最終以實驗驗證理論的正確性並且發現不同實驗參數與加工條件下,高速磨削有助於提升對於難削材的加工效率或增進表面完整性。
In recent year, the manufacturer of electronic devices has confirmed that Wide Bandgap materials such as Silicon Carbide can bring many advantages to the development of Power Semiconductor Devices. However, Silicon Carbide with the high hardness and strength are difficult-to-cut materials in the machining process. By analyzing the high speed grinding abrasive trajectory, we investigate the difference between high speed grinding and conventional grinding. We also established the model of chip formation on high speed grinding and find the reason why high speed grinding is suitable for processing silicon carbide. Finally, these experiments verify the chip formation proposed, also the result shows that high speed grinding with various experiment parameters and processing conditions can enhance the grinding efficiency as well as improve the surface integrity.
[1] W. Brain Rowe, “Principles of Modern Grinding Technology,” William Andrew, 2009.
[2] C.J. Wu, B.Z. Li, J.Z. Pang, “Ductile grinding of Silicon carbide in high speed grinding,” Journal of Advanced Mechanical Design, System, and Manufacturing, Vol.10, No.2, 2016, Pages 1-8.
[3] 朱從容,超高速磨削及其關鍵技術,磨床與磨削,2000,4:51-52。
[4] Comley, P., Walton, I., Jin, T., Stephenson, D.J., “A high removal rate grinding process for the production of automotive crankshafts,” CIRP Annals - Manufacturing Technology, Volume 55, Issue 1, 2006, Pages -347.
[5] D.H. Zhu, S.J. Yan, B.Z. Li, “Single-grit modeling and simulation of crack initiation and propagation in SiC grinding using maximum undeformed chip thickness,” Computational Material Science, Vol.92, 2014, Pages 13-21.
[6] J.M. Ni, B.Z. Li, J.Z. Pang “The Characteristics of High-Speed Cylindrical Grinding of Silicon Carbide and its influence on the Surface Layer,” Advanced Materials Research, Vol. 565, 2012, Pages 123-128.
[7] Sanjay Agarwal, “Optimizing machining parameters to combine high productivity with high surface integrity in grinding silicon carbide ceramics,” Ceramics International, Vol. 42, 2016, Pages 6244-6262.
[8] Soney, R., Peter, J. ,“The significance of Chip Thickness in Grinding,” CIRP Annals - Manufacturing Technology, Volume 23, Issue 2, 1974, Pages -223.
[9] 劉立飛、張飛虎、劉民慧,碳化矽陶瓷的超聲振動輔助磨削,光學精密工程,第23卷,第8期,2015。
[10] 李伯民、趙波 主編,現代磨削技術,機械工業出版社,2003。
[11] 李尚軒,超聲輔助磨削之切屑構形分析,國立清華大學動機所碩士論文,2013。
[12] Ramesh K., S. H. Yeo, Gowri S., “Experimental Evaluation on Super High-Speed Grinding of Advanced Ceramics,” The International Journal of Advanced Manufacturing Technology, 17, 2006, p87-92.
[13] T. W. Hwang, C. J. Evans, E. P. Whitenton, “High-Speed Grinding of Silicon Nitride With Electroplated Diamond Wheels, Part1:Wear and Wheel Life,” Journal of Engineering for Industry, Trans. ASME , Vol. 122 ,2000 ,p431-442.
[14] T. W. Hwang, C. J. Evans, E. P. Whitenton, “High-Speed Grinding of Silicon Nitride With Electroplated Diamond Wheels, Part2:Wheel Topography and Grinding Mechanisms,” Journal of Engineering for Industry, Trans. ASME , Vol. 122 ,2000 ,p443-452.
[15] Komson Jirapattarasilp, Jittra Rukijkanpanich, “The experiment of High-Speed Grinding of a gemstone: cubic zirconia,” The International Journal of Advanced Manufacturing Technology, 33, 2007, p1136-1142.
[16] J.B. Chen, Q.H. Fang, L.C. Zhang, “Investigate on distribution and scatter of surface residual stress in ultra-high speed grinding,” The International Journal of Advanced Manufacturing Technology, 75, 2014, p615-627.
[17] X.M. Huang, Y.H. Ren, Z.X. Zhou, “Experimental study on white layers in high-speed grinding of AISI52100 hardened steel,” Journal of Mechanical Science and Technology, 29, 2015, p1257-1263.
[18] L. Yin, H. Huang, K. Ramesh, T. Huang, “High speed versus conventional grinding in high removal rate machining of alumina and alumina-titania,” International Journal of Machine Tools & Manufacture, 45, 2005, p897-907.
[19] B. Zhao , W. F. Ding, J. B. Dai, “A comparison between conventional speed grinding and super-high speed grinding of (TiCp+TiBw)/Ti-6Al-4V composites using vitrified CBN wheel,” The International Journal of Advanced Manufacturing Technology, 72, 2014, p69-75.
[20] K. Ramesh, H. Huang, L. Yin, “Analytical and experimental investigation of coolant velocity in high speed grinding,” International Journal of Machine Tools & Manufacture, 44, 2004, p1069-1076.
[21] Stephen Malkin, “Grinding Technology,” Society of Manufacturing Engineers, 1989.
[22] 盧志勇,Inconel 718的切屑形態與麼削特性之研究,國立清華大學動機所碩士論文,1993。
[23] Malkin, S. and Murray, T., “The Wear of Grinding Wheels, Part 1, Attritious Wear,” Journal of Engineering for Industry, Trans. ASME , Vol. 93 ,1971 ,p1129.
[24] C. F. Yao, Q. C. Jin, X. C. Huang, “Research on surface integrity of grinding Inconel718,” The International Journal of Advanced Manufacturing Technology, 65, 2013, p1019-1030.
[25] S. T. Huang, X. L. Yu, F. S. Wang, L. F. Xu, “A study on chip shape and chip-forming mechanism in grinding of high volume fraction SiC particle reinforced Al-matrix composites,” The International Journal of Advanced Manufacturing Technology, 80, 2015, p1927-1932.
[26] Dinesh Setti, Manoj Kumar Sinha, Sudarsan Ghosh, P. Venkateswara Rao, “Performance evaluation of Ti-6Al-4V grinding using chip-formation and coefficient of friction under the influence of nanofluids,” International Journal of Machine Tools & Manufacture, 88, 2015, p237-248.
[27] S. C. Sui, P. F. Feng, “Investigation of serrated chip morphology change regular in the burning of titanium alloys,” The International Journal of Advanced Manufacturing Technology, 2016.
[28] Y. Peng, Z. Liang, Y. Wu, Y. Guo, C. Wang, “Characteristics of chip generation by vertical elliptic ultrasonic vibration-assisted grinding of brittle materials,” The International Journal of Advanced Manufacturing Technology, 62, 2012, p563-568.
[29] Ioan D. Marinescu, W. Brian Rowe, Boris Dimitrov and Ichiro Inasaki, “Tribology of Abrasive Machining Processes,” William Andrew publishing, 2004