簡易檢索 / 詳目顯示

研究生: 林澧亦
Lin, Li Yi
論文名稱: 高速磨削應用於碳化矽之研究
A study on High-Speed Grinding of Silicon Carbide
指導教授: 左培倫
Tso, Pei Lum
口試委員: 趙崇禮
鄧建中
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 87
中文關鍵詞: 高速磨削難削材料切屑構形碳化矽
外文關鍵詞: High Speed Grinding, Difficult-to-cut Materials, Silicon Carbide, Chip formation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去十年元件製造商已經證實碳化矽寬能隙材料可以為下一代功率半導體元件的發展帶來多重優勢。而目前因為碳化矽高硬度高脆性的關係使加工困難,造成價格昂貴而無法商業化。本文希望藉由高速磨削可以解決碳化矽難削材加工困難的問題,並且以磨粒軌跡為切入點分析高速磨削與傳統磨削的差異,建立高速磨削的幾何切屑構形理論,由此理論說明高速磨削適用於難削材加工之原因。最終以實驗驗證理論的正確性並且發現不同實驗參數與加工條件下,高速磨削有助於提升對於難削材的加工效率或增進表面完整性。


    In recent year, the manufacturer of electronic devices has confirmed that Wide Bandgap materials such as Silicon Carbide can bring many advantages to the development of Power Semiconductor Devices. However, Silicon Carbide with the high hardness and strength are difficult-to-cut materials in the machining process. By analyzing the high speed grinding abrasive trajectory, we investigate the difference between high speed grinding and conventional grinding. We also established the model of chip formation on high speed grinding and find the reason why high speed grinding is suitable for processing silicon carbide. Finally, these experiments verify the chip formation proposed, also the result shows that high speed grinding with various experiment parameters and processing conditions can enhance the grinding efficiency as well as improve the surface integrity.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 簡介 1 1.1 難削材料 1 1.1.1碳化矽 2 1.2 磨削加工 4 1.3 高速磨削 5 1.3.1 高速磨削原理 6 1.3.2 高速磨削特徵 7 1.3.3 高速磨削應用 8 1.4 研究動機與目的 10 第二章 文獻回顧 12 2.1碳化矽 12 2.2高速磨削 15 2.3磨削切屑 18 第三章 幾何學之磨削理論 24 3.1接觸弧長 24 3.2材料移除率[21] 25 3.3最大未變形切屑厚度[21] 25 3.4磨削力 27 3.5比磨削能[21] 28 第四章 高速磨削機制探討 29 4.1前言 29 4.2磨粒軌跡程式探討 29 4.2.1磨粒運動方程式 29 4.2.2高速磨削之磨粒軌跡程式模擬 30 4.2.3高速磨削之接觸弧長 34 4.2.4接觸弧長對磨削之影響 35 4.2.5高速磨削之最大未變形切屑厚度 36 4.2.6切屑厚度對磨削之影響 37 4.3磨削力與比磨削能預測 38 4.3.1切屑數目[1] 38 4.3.2磨削力預測分析 39 4.3.3比磨削能預測分析 41 4.4高速磨削對於難削材加工之幫助 41 第五章 實驗規劃與設備 43 5.1實驗規劃 43 5.2實驗設備介紹 44 5.2.1建德KGS-250WM1型平面磨床 44 5.2.2 KISTLER Type 9257B動力計、PCL-812PG轉換卡 45 5.2.3 非接觸式表面輪廓量測儀 46 5.2.4表面粗度測定儀 46 5.2.5 Precisa XS1220M電子天平 47 5.2.6 JEOL-JSM-7000F掃描式電子顯微鏡 47 5.3實驗設備架設配置 48 5.4實驗材料與砂輪 49 5.4.1工件-碳化矽 49 5.4.2實驗砂輪規格 50 5.5 磨削實驗 50 5.5.1砂輪轉提升速與加工條件影響之實驗 50 5.5.2切深固定與加工條件影響之實驗 52 5.5.3材料移除率固定與加工條件影響之實驗 53 第六章 實驗結果分析討論 55 6.1實驗結果分析 55 6.2轉速提升實驗結果 56 6.2.1磨削力 56 6.2.2材料移除量與比磨削能 56 6.2.3 表面粗糙度 58 6.3 切深固定實驗結果 60 6.3.1磨削力 60 6.3.2材料移除量與比磨削能 61 6.3.3 表面粗糙度 63 6.4材料移除率固定實驗 64 6.4.1磨削力 64 6.4.2材料移除量與比磨削能 65 6.4.3表面粗糙度 67 6.5表面形貌 69 6.6切屑分析 75 6.7延性磨削 78 第七章 結論與未來展望 80 7.1結論 80 7.1.1高速磨削的幾何數值分析 80 7.1.2砂輪轉速提升實驗 81 7.1.3切深固定實驗 81 7.1.4材料移除率固定實驗 82 7.1.5切屑分析 82 7.1.6表面形貌 83 7.2未來展望 83 參考文獻 85

    [1] W. Brain Rowe, “Principles of Modern Grinding Technology,” William Andrew, 2009.
    [2] C.J. Wu, B.Z. Li, J.Z. Pang, “Ductile grinding of Silicon carbide in high speed grinding,” Journal of Advanced Mechanical Design, System, and Manufacturing, Vol.10, No.2, 2016, Pages 1-8.
    [3] 朱從容,超高速磨削及其關鍵技術,磨床與磨削,2000,4:51-52。
    [4] Comley, P., Walton, I., Jin, T., Stephenson, D.J., “A high removal rate grinding process for the production of automotive crankshafts,” CIRP Annals - Manufacturing Technology, Volume 55, Issue 1, 2006, Pages -347.
    [5] D.H. Zhu, S.J. Yan, B.Z. Li, “Single-grit modeling and simulation of crack initiation and propagation in SiC grinding using maximum undeformed chip thickness,” Computational Material Science, Vol.92, 2014, Pages 13-21.
    [6] J.M. Ni, B.Z. Li, J.Z. Pang “The Characteristics of High-Speed Cylindrical Grinding of Silicon Carbide and its influence on the Surface Layer,” Advanced Materials Research, Vol. 565, 2012, Pages 123-128.
    [7] Sanjay Agarwal, “Optimizing machining parameters to combine high productivity with high surface integrity in grinding silicon carbide ceramics,” Ceramics International, Vol. 42, 2016, Pages 6244-6262.
    [8] Soney, R., Peter, J. ,“The significance of Chip Thickness in Grinding,” CIRP Annals - Manufacturing Technology, Volume 23, Issue 2, 1974, Pages -223.
    [9] 劉立飛、張飛虎、劉民慧,碳化矽陶瓷的超聲振動輔助磨削,光學精密工程,第23卷,第8期,2015。
    [10] 李伯民、趙波 主編,現代磨削技術,機械工業出版社,2003。
    [11] 李尚軒,超聲輔助磨削之切屑構形分析,國立清華大學動機所碩士論文,2013。
    [12] Ramesh K., S. H. Yeo, Gowri S., “Experimental Evaluation on Super High-Speed Grinding of Advanced Ceramics,” The International Journal of Advanced Manufacturing Technology, 17, 2006, p87-92.
    [13] T. W. Hwang, C. J. Evans, E. P. Whitenton, “High-Speed Grinding of Silicon Nitride With Electroplated Diamond Wheels, Part1:Wear and Wheel Life,” Journal of Engineering for Industry, Trans. ASME , Vol. 122 ,2000 ,p431-442.
    [14] T. W. Hwang, C. J. Evans, E. P. Whitenton, “High-Speed Grinding of Silicon Nitride With Electroplated Diamond Wheels, Part2:Wheel Topography and Grinding Mechanisms,” Journal of Engineering for Industry, Trans. ASME , Vol. 122 ,2000 ,p443-452.
    [15] Komson Jirapattarasilp, Jittra Rukijkanpanich, “The experiment of High-Speed Grinding of a gemstone: cubic zirconia,” The International Journal of Advanced Manufacturing Technology, 33, 2007, p1136-1142.
    [16] J.B. Chen, Q.H. Fang, L.C. Zhang, “Investigate on distribution and scatter of surface residual stress in ultra-high speed grinding,” The International Journal of Advanced Manufacturing Technology, 75, 2014, p615-627.
    [17] X.M. Huang, Y.H. Ren, Z.X. Zhou, “Experimental study on white layers in high-speed grinding of AISI52100 hardened steel,” Journal of Mechanical Science and Technology, 29, 2015, p1257-1263.
    [18] L. Yin, H. Huang, K. Ramesh, T. Huang, “High speed versus conventional grinding in high removal rate machining of alumina and alumina-titania,” International Journal of Machine Tools & Manufacture, 45, 2005, p897-907.
    [19] B. Zhao , W. F. Ding, J. B. Dai, “A comparison between conventional speed grinding and super-high speed grinding of (TiCp+TiBw)/Ti-6Al-4V composites using vitrified CBN wheel,” The International Journal of Advanced Manufacturing Technology, 72, 2014, p69-75.
    [20] K. Ramesh, H. Huang, L. Yin, “Analytical and experimental investigation of coolant velocity in high speed grinding,” International Journal of Machine Tools & Manufacture, 44, 2004, p1069-1076.
    [21] Stephen Malkin, “Grinding Technology,” Society of Manufacturing Engineers, 1989.
    [22] 盧志勇,Inconel 718的切屑形態與麼削特性之研究,國立清華大學動機所碩士論文,1993。
    [23] Malkin, S. and Murray, T., “The Wear of Grinding Wheels, Part 1, Attritious Wear,” Journal of Engineering for Industry, Trans. ASME , Vol. 93 ,1971 ,p1129.
    [24] C. F. Yao, Q. C. Jin, X. C. Huang, “Research on surface integrity of grinding Inconel718,” The International Journal of Advanced Manufacturing Technology, 65, 2013, p1019-1030.
    [25] S. T. Huang, X. L. Yu, F. S. Wang, L. F. Xu, “A study on chip shape and chip-forming mechanism in grinding of high volume fraction SiC particle reinforced Al-matrix composites,” The International Journal of Advanced Manufacturing Technology, 80, 2015, p1927-1932.
    [26] Dinesh Setti, Manoj Kumar Sinha, Sudarsan Ghosh, P. Venkateswara Rao, “Performance evaluation of Ti-6Al-4V grinding using chip-formation and coefficient of friction under the influence of nanofluids,” International Journal of Machine Tools & Manufacture, 88, 2015, p237-248.
    [27] S. C. Sui, P. F. Feng, “Investigation of serrated chip morphology change regular in the burning of titanium alloys,” The International Journal of Advanced Manufacturing Technology, 2016.
    [28] Y. Peng, Z. Liang, Y. Wu, Y. Guo, C. Wang, “Characteristics of chip generation by vertical elliptic ultrasonic vibration-assisted grinding of brittle materials,” The International Journal of Advanced Manufacturing Technology, 62, 2012, p563-568.
    [29] Ioan D. Marinescu, W. Brian Rowe, Boris Dimitrov and Ichiro Inasaki, “Tribology of Abrasive Machining Processes,” William Andrew publishing, 2004

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE