簡易檢索 / 詳目顯示

研究生: 呂昆霖
Leu, Kuen Lin
論文名稱: 小球藻程序性降解及其超氧歧化酶基因選殖/葉綠素多級螢光上升之探討
The programmed disintegration and SOD gene cloning of Chlorella / study of chlorophyll polyphasic fluorescence rise
指導教授: 徐邦達
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2004
畢業學年度: 93
語文別: 英文
論文頁數: 121
中文關鍵詞: 超氧歧化酶程序性細胞降解多級螢光上升小球藻
外文關鍵詞: SOD, Programmed cell disintegration, polyphasic fluorescence rise, Chlorella
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 同步化的小球藻經46.5ºC熱處理一小時後,再照光培養,會在數小時內開始產生細胞降解,而葉綠素經由光氧化作用,於八小時後幾近完全分解,但此時細胞內並未產生自由基。目前已有一種鐵型超氧歧化酶基因,在小球藻211-8株中被選殖出來,其cDNA全長為1063個鹼基配對而成,其中609個鹼基配對可轉譯203個氨基酸, 它與真核單胞藻的鐵型超氧歧化酶核酸序列的最高相似度 73.5%,氨基酸序列的最高相似度為70.5%,將此基因與表現載體接和後轉送至大腸菌中大量表現,可得一分子量約 22.3 kDa且具有活性的蛋白質,在生物體內它可能為雙倍體形式的活性蛋白。另外在白化的小球藻中,核酸和葉綠體DNA與葉綠素的分解同步,但粒線體DNA分解較慢,並有一種新核酸分解酶產生。DNA分解屬於不可逆的反應,相對於高等植物的程序性細胞死亡,熱處理後小球藻中未出現 DNA小碎片段,亦無大量蛋白質分解,細胞膜保持完整而未破裂,這些現象可能與高等植物程序性細胞死亡有很大差異。而在高等植物黃金榕的葉綠素螢光誘發研究上,在高光照射時會產生葉綠素螢光上升,稱之為「O-J-I-P」多級螢光上升,其中起始上升點稱為「O-J」期,它對光的強弱很敏感,在低光度時,此期反應時間會變慢,螢光量較低。由於葉子有透光性,故光線可穿透至葉內部,且螢光也可穿透出來而被偵測到,但激發光會被葉綠素強烈吸收而誘發出光梯度,我們的實驗似乎可證明在完整葉片的葉綠素多級螢光上升的中間期 (J-I期),似乎主要是由下半層的葉片所產生。


    The small vegetative cells of a synchronous Chlorella pyrenoidosa culture subjected to a heat pre-treatment (46.5ºC for 1 h in the dark) and cultured again under continuous illumination thereafter started to disintegrate within hours. Chlorophylls were degraded via photooxidation, started after a 2-h-delay and completed within 8 h. However, no free radicals were released from the sites of photooxidation, but a FeSOD gene from Chlorella pyrenoidosa 211-8b was cloned. The full length of cDNA is 1063 base pairs, with an open reading frame (ORF) of 609 base pairs (203 amino acids), and compared with NCBI gene databank. It revealed 73.5% identity in nucleic sequence and 70.5% identity in amino acids sequence, respectively, with the FeSOD sequence of Chlamydomonas reinhardtii, an eukaryotic unicellular green alga. The nucleic sequence of FeSOD (609 bps ORF) along with the expression vector was transformed into E. coli expression host. An over-expressed protein of about 22.3 kDa was detected. The activity of the expressed protein was assayed by using a method of gel activity staining, and a clear band was observed at about 44 kDa, likely a dimer form of FeSOD. Besides, DNA in nucleus and chloroplast disappeared along with chlorophyll pigments, but mitochondrial DNA appeared to decay at a much slower rate. In addition, a novel nuclease activity was detected in heat-treated cells undergoing DNA degradation. The decomposition of DNA rendered the disintegration process irreversible. Contrary to the programmed cell death of higher plants, these heat-treated Chlorella cells failed to exhibit DNA laddering and massive protein degradation, but retained their cell membrane integrity. Thus, it might be in a way very different from the programmed cell death observed in many higher plants. However, study of chlorophyll fluorescence induction of higher plants, Ficus microcapa L. f. cv. Golden-leaves. The rise of the chlorophyll fluorescence of a whole leaf as induced by high intensity actinic light comprises three distinct phases, termed O-J-I-P polyphasic rise. The initial rise (the O-J phase) was found to be the most sensitive to light intensity, being slower and smaller with decreasing irradiation. The leaf was also found to be transparent for chlorophyll fluorescence to a considerable extent, so that the fluorescence originating from deep inside the sample could still be detected. In contrast, the actinic light used to induce fluorescence was strongly absorbed by chlorophylls, so that a steep light gradient was created along the light path. The fluorescence transient of a leaf thus was always a mixture of the fluorescence from the surface of the sample as well as that from the inside of the sample, whose O-J phase is slower as it is induced by a weaker actinic light. We have provided evidences suggesting that, in an intact leaf, the middle phase of the measured polyphasic fluorescence transient (the J-I phase) might actually reflect the initial rise of the transient coming from the abaxial layer of the leaf.

    Content Abbreviation -------------------------------------------I Chinese abstract --------------------------------------II English abstract --------------------------------------III Chapter 1. A programmed cell disintegration of Chlorella after heat stress. ------------------------------P1 Abstract -----------------------------------------p2 Introduction -------------------------------------p3 Materials and methods ----------------------------p7 Results ------------------------------------------p14 Discussion ---------------------------------------p19 Perspective ---------------------------------------p26 References ---------------------------------------p27 Tables and Figures --------------------------------p32 Chapter 2. Cloning of superoxide dismutase gene from Chlorella pyrenoidosa.------------------------------p50 Abstract -------------------------------------------p51 Introduction---------------------------------------p52 Materials and methods -----------------------------p59 Results---------------------------------------------p64 Discussion ----------------------------------------p67 Perspective --------------------------------------p69 References ----------------------------------------p70 Tables and Figures --------------------------------p77 Chapter 3. A possible origin of the middle phase of polyphasic chlorophyll fluorescence transient. --- P89 Abstrac-----------------------------------------p90 Introduction------------------------------------p91 Materials and methods --------------------------p94 Results and Discussion--------------------------p97 Perspective -----------------------------------p104 References ------------------------------------p105 Figures----------------------------------------p108 Appendix----------------------------------------p113

    Chapter 1 References

    Ahmad, M., Jarillo, J. A., Klimczak, L. J., Landry, L. G., Peng, T., Last, R. L. and Cashmore, A. R. (1997) An enzyme similar to animal type II photolyases mediates photoreactivation in Arabidopsis. Plant Cell. 9: 199-207.
    Beere, H. M. and Green, D. R. (2001) Stress management – heat shock protein-70 and the regulation of apoptosis. Trends in Cell Biol. 11: 6-10.
    Blank, A. and McKeon, T. A. (1989) Single-strand-preferring nuclease activity in wheat leaves is increased in senescence and is negatively photoregulated. Proc. Natl. Acad. Sci. USA. 86: 3169–3173.
    Cakmak, I. (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 146: 185-205.
    Caspi, V., Malkin, S. and Marder, J. B. (2000) Oxygen uptake photosensitized by disorganized chlorophyll in model systems and thylakoids of greening barley. Photochem. Photobiol. 71: 441–446.
    Chen, P. C. (1979) Physiologische und biochemische undersuchungen Zur Rhythmilk synchronisierter Chlorella, PhD. Dissertation, Göttingen University, Germany.
    Chen, P. C. and Lorenzen, H. (1986) Changes in the productivity and nuclear divisions in synchronous Chlorella and circadian rhythm. Plant Cell Physiol. 27: 1423-1427.
    Chen, Y. H. and Hsu, B.D. (1995) Effects of dehydration on the electron transport of Chlorella. An in vivo fluorescence study. Photosynth. Res. 46: 295-299.
    Chen, Y. Z. (2004) A morphological study on the programmed cell death of heat-treated Chlorella. National Tsing Hua University, institute of life science. master's thesis. pp 27-30.
    Clarke, A. R. (1996) Molecular chaperones in protein folding and translocation. Curr. Opin. Struct. Biol. 6: 43–50.
    Conkling, B. A., Thomas, E. J. and Ortiz, W. (1993) Delayed but complete loss of chloroplast DNA in heat-bleaching cultures of Euglena gracilis. J. Plant Physiol. 142: 307-311.
    Danon, A., Delorme, V., Mailhac, N. and Gallois, P. (2000) Plant programmed cell death: A common way to die. Plant Physiol. Biochem. 38: 647-655.
    Demmig-Adams, B. and Adams, W. W. III. (2000) Photosynthesis, Harvesting sunlight safely. Nature. 403: 371-374.
    Desikan, R., Mackerness, S. A. H., Hancock, J. T. and Neill, S. J. (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 127: 159-172.
    Engel, N., Jenny, T. A., Mooser, V. and Gossauer, A. (1991) Chlorophyll catabolism in Chlorella protothecoides. Isolation and structure elucidation of a red bilin derivative. FEBS Lett. 293: 131-133.
    Foyer, C. H., Lelandais, M. and Kunert, K. J. (1994) Photooxidative stress in plants. Physiologia. Plantarum. 92: 696-717.
    Gan, S. and Amasino, R. M. (1997) Making sense of senescence, molecular genetic regulation and manipulation of leaf senescence. Plant Physiol. 113: 313-319.
    Ginsburg, S., Schellenberg, M.and Matile, P. (1994) Cleavage of chlorophyllporphyrin. Requirement for reduced ferredoxin and oxygen. Plant Physiol. 105: 545–554.
    González, A., Steffen, K. L. and Lynch, J. P. (1998) Light and excess manganese, implications for oxidative stress in common bean. Plant Physiol. 118: 493–504.
    Green, D. R. (2000) Apoptotic pathways: paper wraps stone blunts scissors. Cell. 102: 1–4.
    Grossmann, K., Kwiatkowski, J. and Tresch, S. (2001) Auxin herbicides induce H2O2 overproduction and tissue damage in cleavers (Galium aparine L.). J Exp. Bot. 52: 1811-1816.
    Hoeberichts, F. A. and Woltering, E. J. (2002) Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulators. BioEssays. 25: 47-57.
    Hörtensteiner, S. (1999) Chlorophyll breakdown in higher plants and algae. Cell. Mol. Life. Sci. 56: 330-347.
    Hörtensteiner, S., Chinner, J., Matile, P., Thomas, H. and Donnison, I.S. (2000) Chlorophyll breakdown in Chlorella protothecoides: characterization of degreening and cloning of degreening-related genes. Plant Mol. Biol. 42: 439-450.
    Hörtensteiner, S., Wüthrich, K. L., Matile, P., Ongania, K. H. and Kräutler, B. (1998) The key step in chlorophyll breakdown in higher plants: cleavage of pheophorbide a macrocycle by a monooxygenase. J. Biol. Chem. 273: 15335–15339.
    Jones, A. M. (2001) Programmed cell death in development and defense. Plant Physiol. 125: 94-97.
    Kvello Stenstr□m, A. G., Moan, J., Brunborg, G. and Eklund, T. (1980) Photodynamic inactivation of yeast cells sensitized by hematoporphyrin. Photochem. Photobiol. 32: 349-352.
    Langmeier, M., Ginsburg, S. and Matile, P. (1993) Chlorophyll breakdown in senescent leaves: demonstration of Mg-dechelatase activity. Physiologia Plantarum. 89: 347–353.
    Lee, R. H. and Chen, S. C. G. (2002) Programmed cell death during rice leaf senescence is nonapoptotic. New Phytol. 155: 25-32.
    Leu, K. L. and Hsu, B. D. (2004) A programmed cell disintegration of Chlorella after heat stress. Plant Science. (in press).
    Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S. and Wang, X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 91: 479-489.
    Matile, P., Hörtensteiner, S. and Thomas, H. (1999) Chlorophyll degradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 67-95.
    Mills, A. A. (1995) Image formation on the Shroud of Turin : the reactive oxygen intermediates hypothesis. Interdisciplinary Science Reviews. 20: 319-326.
    Noguchi, T. (2002) Dual role of triplet localization on the accessory chlorophyll in the photosystem II reaction center: photoprotection and photodamage of the D1 protein. Plant Cell Physiol. 43: 1112-1116.
    Öquist, G. and Huner, N. P. A. (2003) Photosynthesis of overwintering evergreen plants. Annu. Rev. Plant Biol. 54: 329-355.
    Ortiz, W. and Wilson, C. J. (1988) Induced changes in chloroplast protein accumulation during heat-bleaching in Euglena gracilis. Plant Physiol. 86: 554-561.
    Parsell, D. A. and Lindquist, S. (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27: 437–496.
    Rabinowitch, H. D., Rosen, G. M. and Fridovich, I. (1989) A mimic of superoxide dismutase activity protects Chlorella sorokiniana against the toxicity of sulfite. Free Radical Biol. Medi. 6: 45-48.
    Ravagnan, L., Roumier, T. and Kroemer, G. (2002) Mitochondria, the killer organelles and their weapons. J. Cell. Physiol. 192: 131-137.
    Rodoni, S., Mühlecker, W., Anderl, M., Kräutler, B. and Moser, D. (1997) Chlorophyll breakdown in senescent chloroplasts. Cleavage of pheophorbide a in two enzymic steps. Plant Physiol. 115: 669–676.
    Scheel, D. (2002) Oxidative burst and the role of reactive oxygen species in plant-pathogen interactions, in: D. Inze, M. Van Montagu, (Eds.), Oxidative stress in Plants, Taylor & Francis, New York. pp. 137-153.
    Schellenberg, M., Matile, P. and Thomas, H. (1993) Production of presumptive chlorophyll catabolite in vitro: requirement of reduced ferredoxin. Planta. 191: 417–420.
    Simeonova, E., Sikora, A., Charzynska, M. and Mostowska, A. (2000) Aspects of programmed cell death during leaf senescence of mono- and dicotyledonous plants. Protoplasma. 214: 93-101.
    Sugiyama, M., Ito, J., Aoyagi, S. and Fukuda, H. (2000) Endonucleases. Plant Mol. Biol. 44: 387-397.
    Trebitsh, T., Goldschmidt, E. E. and Riov, J. (1993) Ethylene induces de novo synthesis of a chlorophyll degrading enzyme in Citrus fruit peel. Proc. Natl. Acad. Sci. USA. 90: 9441–9445.
    Tzeng, S. and Hsu, B. D. (2001) Chlorophyll degradation in heat-treated Chlorella pyrenoidosa. A flow cytometric study. Aust. J. Plant Physiol. 28: 79-83.
    Wilson, C. M. (1975) Plant Nucleases. Annu. Rev. Plant Physiol. 26: 187-208.
    Yokthongwattana, K., Chrost, B., Behrman, S., Casper-Lindley, C. and Melis, A. (2001) Photosystem II damage and repair cycle in the green alga Dunaliella salina: involvement of a chloroplast-localized Hsp70. Plant Cell Physiol. 42: 1389-1397.
    Yoshida, S. (2003) Molecular regulation of leaf senescence. Curr. Opin. Plant Biol. 6: 79-84.

    Chapter 2 References

    Baker, C. J. and Orlandi, E. W. (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol. 33: 299–321.
    Baker, C. J., Orlandi, E. W. and Mock, N. M. (1993) Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol. 102: 1341–1344.
    Bannister, J. V., Bannister, W. H. and Rotilio, G. (1987) Aspects of the structure, function and applications of ˙O2- dismutase. CRC Crit Rev Biochem. 22: 111–180.
    Bartosz, G. (1995) Druga Twarz Tlenu, Wydawnictwo Naukowe PWN, Warszawa.
    Bradley, D. J., Kjellbom, P. and Lamb, C. J. (1992) Elicitor- and woundinduced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell. 70: 21–30.
    Campbell, W. S. and Laudenbach, D. E. (1995) Characterization of four ˙O2- dismutase genes from a filamentous cyanobacterium. J Bacteriol. 177: 964–972.
    Carlioz, A. and Touati, D. (1986) Isolation of ˙O2- dismutase mutants in Escherichia coli: is ˙O2- dismutase necessary for aerobic life? EMBO J. 5: 625–630.
    Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H., Montagu, M. V., Inzé, D. and Camp, W. V. (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc. Natl. Acad. Sci. USA. 95: 5818–5823.
    Chen, H., Romo-Leroux, P. A. and Salin, M. L. (1996) The iron-containing superoxide dismutase-encoding gene from Chlamydomonas reinhardtii obtained by direct and inverse PCR. Gene. 168:113-116.
    Chen, Z., Malamy, J., Henning, J., Conrath, U., Sanchez-Casas, P., Silva, H., Ricigliano, J. and Klessig, D. F. (1995) Induction, modification, and transduction of the salicylic acid signal in plant defense responses. Proc. Natl. Acad. Sci. USA. 92: 4134–4137.
    Clare, D. A., Rabinowitch, H. D. and Fridovich, I. (1984) Superoxide dismutase and chilling injury in Chlorella ellipsoidea. Arch. Biochem. Biophys. 231: 158–163.
    Doke, N. and Ohashi, N. (1988) Involvement of an ˙O2- generating system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus. Physiol. Mol. Plant Pathol. 32: 163–175.
    Dorey, S., Baillieul, F., Pierrel, M. A., Saindrenan, P., Fritig, B. and Kauffmann, S. (1997) Spatial and temporal induction of cell death, defense genes, and accumulation of salicylic acid in tobacco leaves reacting hypersensitively to a fungal glycoprotein elicitor. Mol. Plant Microbe. Interact. 10: 646–655.
    Dorey, S., Kopp, M., Geoffroy, P., Fritig, B. and Kauffmann, S. (1999) Hydrogen peroxide from the oxidative burst is neither necessary nor sufficient for hypersensitive cell death induction, phenylalanine ammonia lyase stimulation, salicylic acid accumulation, or scopoletin consumption in cultured tobacco cells treated with elicitin. Plant Physiol. 121: 163-171.
    Fridovich, I. (1989) Superoxide dismutases, an adaptation to a paramagnetic gas. J. Biol. Chem. 264: 7761–7764.
    Fryer, M. J., Andrews, J. R., Oxborough, K., Blowers, D. A. and Baker, N. R .(1998) Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol.116: 571–580.
    Grace, S. C. (1990) Phylogenetic distribution of superoxide dismutase supports an endosymbiotic origin for chloroplasts and mitochondria. Life Sci. 47: 1875-1886.
    Gross, G. G., Janse, C. and Elstner, E. F. (1977) Involvement of malate, monophenols and the superoxide radical in hydrogen peroxide formation by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.). Planta. 136: 271-276.
    Haas, A. and Goebel, W. (1992) Cloning of a ˙O2- dismutase gene from Listeria ivanovii by functional complementation in Escherichia coli and characterization of the gene product. Mol. Gen. Genet. 231: 313–322.
    Hahlbrock, K. and Scheel, D. (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 347–369.
    Halliwell, B. (1978) Lignin synthesis: the generation of hydroxgen peroxide and superoxide by horseradish peroxidase and its stimulation by manganese(II) and phenols. Planta. 140: 81-88.
    Herbert, S. K., Samson, G., Fork, D. C. and Laudenbach, D. E. (1992) Characterization of damage to photosystems I and II in a cyanobacterium lacking detectable iron ˙O2- dismutase activity. Proc. Natl. Acad. Sci. USA. 89: 8716–8720.
    Hérouart, D., Bowler, C., Tsang, E. W. T., Van Camp, W., Van Montagu, M. and Inzé, D. (1991) Differential expression of superoxide dismutase genes in Nicotiana plumbaginifolia exposed to environmental stress conditions. In EJ Pell, KL Steffen, eds, Active Oxygen/Oxidative Stress and Plant Metabolism. American Society of Plant Physiologists, Rockville, MD, pp 250–252.
    Janz, E. R. and Maclean, F. I. (1973) The effect of cold shock on the blue green alga Anacystis nidulans. Can. J. Microbiol. 19: 381–387.
    Kaiser, W. M. (1979) Reversible inhibition of the Calvin cycle and activation of oxidative pentose phosphate cycle in isolated chloroplasts by hydrogen peroxide. Planta. 145: 377–382.
    Kerfeld, C. A., Yoshida, S., Tran, K. T., Yeates, T. O., Cascio, D., Bottin, H., Berthomieu, C., Sugiura, M. and Boussac, A. (2003) The 1.6 Å resolution structure of Fe-superoxide dismutase from the thermophilic cyanobacterium Thermosynechococcus elongatus. J. Biol. Inorg. Chem. 8: 707-714.
    Kliebenstein, D. J., Monde, R .A. and Last, R .L. (1998) Superoxide dismutase in Arabidopsis: An electric enzyme family with disparate regulation and protein localization. Plant Physiol. 118: 637-650.
    Laudenbach, D. E., Trick, C. G. and Straus, N. A. (1989) Cloning and characterization of an Anacystis nidulans R2 ˙O2- dismutase gene. Mol. Gen. Genet. 216: 455–461.
    Legendre, L., Rueter, S., Heinstein, P. F. and Low, P. S. (1993) Characterization of the oligogalacturonide-induced oxidative burst in cultured soybean (Glycine max) cells. Plant Physiol. 102: 233–240.
    Levine, A., Tenhaken, R., Dixon, R. and Lamb, C. (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 79: 583–593.
    Martin, R. E., Thomas, D. J., Tucker, D. E. and Herbert, S. K. (1997) The effects of photo-oxidative stress on photosystem I measured in vivo in Chlamydomonas. Plant Cell Environ. 20: 1451–1461.
    Mauch-Mani, B. and Slusarenko, A. J. (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Perenospora parasitica. Plant Cell. 8: 203–212.
    Okada, S., Kanematsu, S. and Asada, K. (1979) Intracellular distribution of manganese and ferric ˙O2- dismutases in blue-green algae. FEBS Lett. 103: 106–110.
    Ono, T. A. and Murata, N. (1981) Chilling susceptibility of the bluegreen alga Anacystis nidulans. I. Effect of growth temperature. Plant Physiol. 67: 176–181.
    Parker, M. W. and Blake, C. C. F. (1988) Iron- and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures. FEBS Lett. 229: 377-382.
    Peng, M. and Kuc, J. (1992) Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology. 82: 696–699.
    Perl, A., Perl-Treves, R., Galili, S., Aviv, D., Shalgi, E., Malkin, S. and Galun, E. (1993) Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu/Zn superoxide dismutases. Theor. Appl. Genet. 85: 568–576.
    Purdy, D. and Park, S. F. (1994) Cloning, nucleotide sequence and characterization of a gene encoding ˙O2- dismutase from Campylobacter jejuni and Campylobacter coli. Microbiology. 140: 1203–1208.
    Sakamoto, T. and Bryant, D. A. (1998) Growth at low temperature causes nitrogen limitation in the cyanobacterium Synechococcus sp. PCC 7002. Arc. Microbiol. 169: 10–19.
    Scandalios, J. G. (1993) Oxygen stress and superoxide dismutases. Plant Physiol. 101: 7-12.
    Schmidt, M., Meier, B. and Parak, F. (1996) X-Ray Structure of the cambialistic superoxide dismutase from Propionibacterium Shermanii active with Fe or Mn. J. Biol. Inorg. Chem.1: 532-541.
    Sen Gupta, A., Heinen, J. L., Holaday, A. S., Burke, J. J. and Allen, R. D. (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA. 90: 1629–1633.
    Siva, V., Rao, K., Brand, J. J. and Myers, J. (1977) Cold shock syndrome in Anacystis nidulans. Plant Physiol. 59: 965–969.
    Sonoike, K. (1996) Photoinhibition of photosystem I: its physiological significance in chilling sensitivity of plants. Plant Cell Physiol. 37: 239–247.
    Streller, S. and Wingsle, G. (1994) Pinus sylvestris L. needles contain extracellular CuZn superoxide dismutase. Planta. 192: 195-201.
    Sutherland, M. W. (1991) The generation of oxygen radicals during host plant responses to infection. Physiol. Mol. Plant Pathol. 39: 79–93.
    Takeshima, Y., Takatsugu, N., Sugiura, M. and Hagiwara, H. (1994) High-level expression of human ˙O2- dismutase in the cyanobacterium Anacystis nidulans 6301. Proc. Natl. Acad. Sci. USA. 91: 9685–9689.
    Tavernier, E., Wendehenne, J. P., Blein, J. P. and Pugin, A. (1995) Involvement of free calcium in action of cryptogein, a proteinaceous elicitor of a hypersensitive reaction in tobacco cells. Plant Physiol. 109: 1025–1031.
    Thomas, D. J., Avenson, T. J., Thomas, J. B. and Herbert, S. K. (1998) A cyanobacterium lacking iron superoxide dismutase is sensitized to oxidative stress induced with methyl viologen but not sensitized to oxidative stress induced with norflurazon. Plant Physiol. 116: 1593–1602.
    Thomas, D. J., Thomas, J. B., Prier, S. D., Nasso, N. E. and Herbert, S. K. (1999) Iron superoxide dismutase protects against chilling damage in the Cyanobacterium Synechococcus species PCC79421. Plant Physiol. 120: 275–282.
    Tjus, S. E., Moller, B. L. and Scheller, H. V. (1998) Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures. Plant Physiol. 116: 755–764.
    Tsang, E. W. T., Bowler, C., Hérouart. D., Van Camp, W., Vilarroel, R., Genetello, C., Van Montagu, M. and Inzé, D. (1991) Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell. 3: 783–792.
    Wise, R. R. (1995) Chilling-enhanced photo-oxidation: the production, action and study of reactive oxygen species produced during chilling in the light. Photosynth. Res. 45: 79–97.
    Wojtaszek, P. (1997) Oxidative burst: an early plant response to pathogen infection. Biochem. J. 322: 681-692.

    Chapter 3 References

    Arnon, D. I. (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 1-15.
    Barthélemy, X., Popovic, R. and Franck, F. (1997) Studies on the O-J-I-P transient of chlorophyll fluorescence in relation to photosystem II assembly and heterogeneity in plastids of greening barley. J. Photochem. Photobiol. B: Biol. 39: 213-218.
    Chen, Y. M. (1995) The spectroscopic measurement and model analysis of light-sensitive Ficus Micricarpa cv. Golden Leaves. National Taiwan University. Institute of physics. master□s thesis. pp.26-34.
    Evans, J. R. (1999) Leaf anatomy enables more equal access to light and CO2 between chloroplasts. New Phytol. 143: 93-104.
    Haldimann, P. and Strasser, R. J. (1999) Effects of anaerobiosis as probed by the polyphasic chlorophyll a fluorescence rise kinetics in pea (Pisum sativum L.). Photosynth. Res. 62: 67-83.
    Hsu, B. D. and Leu, K. L. (2003) A possible origin of the middle phase of polyphasic chlorophyll fluorescence transient. Functional Plant Biol. 30: 571-576.
    Knapp, A. K., Vogelmann, T. C. and McClean, T. M. (1988) Light and chlorophyll gradients within Cucurbita cotyledons. Plant Cell Environ. 11: 257-263.
    Lazár, D., Brokeš, M., Nauš, J. and Dvořák, L. (1998) Mathematical modellin of 3-(3’,4’-dichlorophenyl)-1,1-dimethylurea action in plant leaves. J. Theoretical Biol. 191: 79-86.
    Lazár, D. (1999) Chlorophyll a fluorescence induction. Biochimica. et. Biophysica. Acta. 1412: 1-28.
    Lu, C. and Vonshak, A. (2002) Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiologia. Plantarum. 114: 405-413.
    Manes, F., Donato, E. and Vitale, M. (2001) Physiological response of Pinus halepensis needles under ozone and water stress conditions. Physiologia. Plantarum. 113: 249-257.
    Neubauer, C. and Schreiber, U. (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: 1. Saturation characteristics and partial control by the photosystem II acceptor side. Zeitschrift für Naturforschung. 42c: 1246-1254.
    Pospíšl, P. and Dau, H. (2000) Chlorophyll fluorescence transients of photosystem II membrane particles as a tool for studying photosynthetic oxygen evolution. Photosynth. Res. 65: 41-52.
    Pospíšl, P. and Dau, H. (2002) Valinomycin sensitivity proves that light-induced thylakoid voltages result in millisecond phase of chlorophyll fluorescence transients. Biochimica. et. Biophysica. Acta. 1554: 94-100.
    Roháček, K. and Barták, M. (1999) Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica. 37: 339-363.
    Schreiber, U. and Krieger, A. (1996) Two fundamentally different types of variable chlorophyll fluorescence in vivo. FEBS Lett. 397: 131-135.
    Stirbet, A., Govindjee., Strasser, B. J. and Strasser, R. J. (1998) Chlorophyll a fluorescence induction in higher plants: Modelling and numerical simulation. J. Theoretical Biol. 193: 131-151.
    Strasser, R. J. and Govindjee. (1991) The Fo and the O-J-I-P fluorescence rise in higher plants and algae. In ‘Regulation of Chloroplast Biogenesis’. (Ed JH Argyroudi-Akoyunoglou) pp. 423-426. (Plenum Press: New York)
    Strasser, R. J., Srivastava, A. and Govindjee. (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem. Photobiol. 61: 32-42.
    Strasser, R. J., Srivastava, A. and Tsimilli-Michael, M. (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In ‘Probing photosynthesis: mechanisms, regulation and adaptation’. (Eds M Yunus, U Pathre and P Mohanty) pp. 445-483. (Taylor & Francis Publishers: London)
    Vogelmann, T. C. and Han, T. (2000) Measurement of gradients of absorbed light in spinach leaves from chlorophyll fluorescence profiles. Plant Cell Environ. 23: 1303-1311.
    Vogelmann, T. C. and Martin, G. (1993) The functional significance of palisade tissue: Penetration of directional vs diffuse light. Plant Cell Environ. 16: 65-72.
    Yang, C. M., Hsu, J. C. and Chen, Y. R. (1995) Light-sensitivity of chlorophyll formation in the leaves of ficus microcarpa cv. Golden-leaves. Bot. Bull. Acad. Sinica. 36: 215-221.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE