簡易檢索 / 詳目顯示

研究生: 蔡瑋倫
Tsai, Wei-Lun
論文名稱: 有機與鈣鈦礦光響應元件之材料與光學工程
Materials and Optical Engineering in Organic and Perovskite Photoresponse Devices
指導教授: 林皓武
Lin, Hao-Wu
口試委員: 周鶴修
Chou, Ho-Hsiu
陳美杏
Chen, Mei-Hsin
朱治偉
Chu, Chih-Wei
曹正熙
Tsao, Cheng-Si
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 152
中文關鍵詞: 有機太陽能電池鈣鈦礦太陽能電池光感測器鈣鈦礦人工光接收器
外文關鍵詞: organic solar cell, perovskite solar cell, photodetector, artificial perovskite photoreceptor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以有機和鈣鈦礦光響應元件研究為主軸,以不同製程和材料製作太陽能電池,以鈣鈦礦材料搭配微共振腔結構製作出可調波長的窄頻光感測器。
    第一章節對有機太陽能電池、有機無機混成鈣鈦礦太陽能電池作簡介以及太陽能電池的工作機制與原理。鈣鈦礦光感測器的簡介以及說明相關參數對光感測器的意義。
    第二章節,我將有機太陽能電池常使用的含鹵素溶劑和添加劑替換掉,以對環境相對友善的不含鹵素甲苯溶劑和1-甲基萘添加劑製作有機太陽能元件。在溶液塗佈製程將以往的旋轉塗佈替換成快速乾燥刮刀塗佈,大量的降低溶液與材料的使用量以減少浪費。以PBDTTT-C-T和PC71BM混和作為元件主動層,以此製程製作出元件光電轉換效率6.62%。
    第三章節,我以表面修飾材料PFN與PEIE取代反結構元件常使用的低功函數材料。利用PFN與PEIE偶極矩修飾ITO基板,分別以PFN和PEIE製作PBDTTT-C-T:PC71BM反結構元件,元件效率分別達到7.54和4.77%。以此為基礎,將PFN或PEIE與奈米顆粒ZnO (nanoparticle ZnO, np-ZnO) 作為元件電子傳輸層。元件以np-ZnO/PFN或np-ZnO/PEIE作為電子傳輸層製作PBDTTT-C-T:PC71BM反結構元件,元件效率分別達到6.65和6.1%。以np-ZnO/PFN結構製作PTB7:PC71BM反結構元件,並以TPTPA小分子材料作為電洞傳輸層,元件效率可以達到8.65%的高效率。在有機太陽能元件的好成果,我們延續到鈣鈦礦太陽能元件。以PEIE/TiO2作為電子傳輸層製作MAPbClxI3-x鈣鈦礦反結構元件,並以TAPC (10 nm)/TAPC:MoO3 (240 nm)/MoO3 (7 nm) 結構作為元件電洞傳輸層,有最佳元件效率9.65%。由於np-TiO2有穩定性的問題,因此我們改以濺鍍方式製備TiO2薄膜。濺鍍TiO2薄膜厚度為10 nm,並進行300°C的熱處理2個小時,製作於MAPbI3鈣鈦礦反結構元件,最好的元件效率為10.3%。
    第四章節,我以第三章節使用的TPTPA小分子材料應用於順序型鈣鈦礦元件作為電洞傳輸層,藉由模擬和可變角度式橢圓偏光儀分析TPTPA特性,最後由瞬態光電流 (transient photocurrent) 和電化學阻抗頻譜 (electrochemical impedance spectroscopy) 最元件進行量測與分析。以TPTPA同時應用於正結構與反結構元件,正結構元件效率為17.1%,而反結構元件效率為17.5%。
    第五章節,將順序型鈣鈦礦材料與微共振腔結構結合,製作出可調控光響應波段的窄頻鈣鈦礦光感測器。以模仿人眼感光細胞為目的,製作出分別感光紅、綠、藍三種光感測元件,並將元件分別掃描照片並成功重建原始照片。更將鈣鈦礦光感測元件製作於軟性基板,經過160次彎曲測試光電流沒有衰退。封裝元件超過48小時照射,光電流表現依舊。代表元件是有很大的潛力作為人工感光細胞。


    In this thesis, I mainly focused on the study of organic and perovskite photoresponse devices. First, I used various processes and materials to fabricate the organic and perovskite solar cells. Then, I combined the perovskite with microcavity structures to realize the wavelength and bandwidth tunable photodetectors.
    In the introduction section, I briefly introduced the development and the measurement methodology of organic solar cells, organic-inorganic hybrid perovskite solar cells, and perovskite photodetectors. Important parameters of photodetector were also mentioned in this section.
    In the second chapter, I utilized the halogen-free solvent and additive, such as toluene and 1-methylnaphthalene, to replace the halogen solvent and additive. I used the rapid-dry blade coating to substitute the traditional spin coating method to fabricate the organic active layers. The rapid-dry blade coating method shows a much better materials and solvents utilization. The device fabricated by this process with a blend of PBDTTT-C-T:PC71BM as an active layer showed a power conversion efficiency (PCE) of 6.62%.
    In the third chapter, surface modified materials PFN and PEIE were used to substitute the low work-function materials. The dipole moment of PFN and PEIE modifies the ITO substrate to act as a cathode. I used the PFN or PEIE to modify the surface of ITO substrate and used PBDTTT-C-T:PC71BM as the active layer. The PCEs of devices were 7.54 and 4.77%, respectively. I then integrated the np-ZnO with PFN or PEIE as the electron transporting layers. The devices made of np-ZnO/PFN and np-ZnO/PEIE as electron transporting layers showed the PCEs of 6.65 and 6.1%, respectively. The optimized np-ZnO/PFN was also utilized with PTB7:PC71BM active layers. The device achieved a high PCE of 8.65%. Finally, MAPbClxI3-x perovskite with PEIE/TiO2 as electron transporting layers and TAPC (10 nm)/TAPC:MoO3 (240 nm)/MoO3 (7 nm) as hole transporting layers showed a PCE of 9.65%. Owing to the stability of np-TiO2, I substituted it with the sputter TiO2. The 10-nm sputter TiO2 was thermally treated at 300°C for 2 hours. The inverted perovskite solar cell with sputter TiO2 exhibited a PCE of 10.3%.
    In the fourth chapter, small molecule TPTPA was utilized as hole transporting materials in the sequential vapor-deposited perovskite solar cell. I used the variable-angle spectroscopic ellipsometer to analyze the TPTPA layer. Then, transient photocurrent and electrochemical impedance spectroscopy were utilized to measure and analyze the devices. TPTPA as hole transporting layer in normal and inverted perovskite solar cells exhibited PCEs of 17.1 and 17.5%, respectively.
    In the fifth chapter, I integrated the perovskite active layer and the microcavity structure to fabricate the wavelength and band tunable photodetectors. To mimic the photoreceptors of the human eye, I fabricated three types of photodetector to detect the red, green, and blue light, respectively. Three types of photodetectors were used to scan photograph and the photocurrents were used to reconstruct the image. I also fabricated the flexible devices, which showed an excellent stability over a 160 times bending test. Encapsulated device was illuminated over 48 hr without any loss of the photocurrent. This result represented the great potential for the artificial human retina applications.

    中文摘要 I Abstract III 目錄 V 圖目錄 VIII 表目錄 XIV 第1章 序論 1 1-1 有機太陽能電池之簡介 1 1-2 有機無機混成鈣鈦礦太陽能電池之簡介 3 1-3 有機與有機無機混成鈣鈦礦太陽能電池工作原理與量測原理 5 1-4 有機無機混成鈣鈦礦光感測器之簡介 9 1-5 有機無機混成鈣鈦礦光感測器工作原理與量測原理 11 1-6 論文架構 14 1-7 圖 16 第2章 刮刀塗佈有機高分子太陽能電池 19 2-1 簡介 19 2-2 實驗細節 21 2-2-1 元件製作 21 2-3 結果與討論 23 2-4 結論 28 2-5 圖與表格 29 第3章 金屬氧化物電子傳輸層應用於有機高分子太陽能電池與鈣鈦礦太陽能電池 41 3-1 簡介 41 3-2 實驗細節 43 3-2-1 奈米顆粒TiO2合成 43 3-2-2 元件製作 44 3-2-3 元件特性量測 46 3-3 結果與討論 47 3-3-1 有機太陽能電池 47 3-3-1 有機無機混成鈣鈦礦太陽能電池 53 3-4 結論 56 3-5 圖與表格 58 第4章 高電洞遷移率之有機小分子應用於正式與反式鈣鈦礦太陽能電池 84 4-1 簡介 84 4-2 實驗細節 86 4-2-1 元件製作 86 4-2-2 元件特性量測 87 4-2-3 分子計算與光學模擬 88 4-3 結果與討論 89 4-4 結論 93 4-5 圖與表格 94 第5章 微共振腔鈣鈦礦之人工視網膜 110 5-1 簡介 110 5-2 實驗細節 112 5-2-1 元件製作 112 5-2-2 元件特性量測 113 5-2-3 光學模擬 115 5-2-4 圖片掃描與重現 116 5-3 結果與討論 117 5-4 結論 122 5-5 圖與表格 123 第6章 結論與未來展望 138 參考資料 140 著作清單 151

    [1] C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
    [2] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
    [3] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Nature 1995, 376, 498.
    [4] L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, J. Hou, Angew. Chem. Int. Ed. Engl. 2011, 50, 9697.
    [5] Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 2010, 22, E135.
    [6] J. Liu, S. S. Chen, D. P. Qian, B. Gautam, G. F. Yang, J. B. Zhao, J. Bergqvist, F. L. Zhang, W. Ma, H. Ade, O. Inganas, K. Gundogdu, F. Gao, H. Yan, Nature Energy 2016, 1, 16089.
    [7] A. Sharenko, C. M. Proctor, T. S. van der Poll, Z. B. Henson, T. Q. Nguyen, G. C. Bazan, Adv. Mater. 2013, 25, 4403.
    [8] T. Kumari, S. M. Lee, S. H. Kang, S. Chen, C. Yang, Energy Environ. Sci. 2017, 10, 258.
    [9] www.nrel.gov/pv/cell-efficiency.html.
    [10] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, Adv. Funct. Mater. 2007, 17, 1636.
    [11] G. D. Wei, S. Y. Wang, K. Sun, M. E. Thompson, S. R. Forrest, Adv. Energy Mater. 2011, 1, 184.
    [12] Y. Zhao, Z. Y. Xie, Y. Qu, Y. H. Geng, L. X. Wang, Appl. Phys. Lett. 2007, 90, 043504.
    [13] S. J. Lou, J. M. Szarko, T. Xu, L. Yu, T. J. Marks, L. X. Chen, J. Am. Chem. Soc. 2011, 133, 20661.
    [14] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, A. J. Heeger, J. Am. Chem. Soc. 2008, 130, 3619.
    [15] J. B. Zhao, Y. K. Li, G. F. Yang, K. Jiang, H. R. Lin, H. Ade, W. Ma, H. Yan, Nature Energy 2016, 1, 15027.
    [16] M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics 2014, 8, 506.
    [17] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
    [18] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park, Nanoscale 2011, 3, 4088.
    [19] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, N. G. Park, Sci. Rep. 2012, 2, 591.
    [20] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
    [21] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, Nano Lett. 2013, 13, 1764.
    [22] M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
    [23] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, L. Spiccia, Angew. Chem. Int. Ed. Engl. 2014, 53, 9898.
    [24] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476.
    [25] M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Energy Environ. Sci. 2016, 9, 1989.
    [26] I. B. Koutselas, L. Ducasse, G. C. Papavassiliou, J. Phys.: Condens. Matter 1996, 8, 1217.
    [27] M. Hirasawa, T. Ishihara, T. Goto, J. Phys. Soc. Jpn. 1994, 63, 3870.
    [28] A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, R. J. Nicholas, Nat. Phys. 2015, 11, 582.
    [29] K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. T. W. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, R. J. Nicholas, Energy Environ. Sci. 2016, 9, 962.
    [30] H.-H. Fang, R. Raissa, M. Abdu-Aguye, S. Adjokatse, G. R. Blake, J. Even, M. A. Loi, Adv. Funct. Mater. 2015, 25, 2378.
    [31] R. D. Jansen-van Vuuren, A. Armin, A. K. Pandey, P. L. Burn, P. Meredith, Adv. Mater. 2016, 28, 4766.
    [32] F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini, Nat. Nanotechnol. 2014, 9, 780.
    [33] K. J. Baeg, M. Binda, D. Natali, M. Caironi, Y. Y. Noh, Adv. Mater. 2013, 25, 4267.
    [34] L. Shen, Y. J. Fang, Q. F. Dong, Z. G. Xiao, J. S. Huang, Appl. Phys. Lett. 2015, 106, 023301.
    [35] L. Shen, Y. Fang, H. Wei, Y. Yuan, J. Huang, Adv. Mater. 2016, 28, 2043.
    [36] Y. Y. Dong, Y. Z. Zhao, S. Y. Zhang, Y. Dai, L. Liu, Y. J. Li, Q. Chen, J. Mater. Chem. A 2018, 6, 21729.
    [37] W. B. Wang, M. D. Du, M. Zhang, J. L. Miao, Y. Fang, F. J. Zhang, Adv. Opt. Mater. 2018, 6, 1800249.
    [38] R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X. C. Zeng, J. Huang, Adv. Mater. 2015, 27, 1912.
    [39] Q. Lin, A. Armin, D. M. Lyons, P. L. Burn, P. Meredith, Adv. Mater. 2015, 27, 2060.
    [40] L. Shen, Y. Fang, D. Wang, Y. Bai, Y. Deng, M. Wang, Y. Lu, J. Huang, Adv. Mater. 2016, 28, 10794.
    [41] Q. Q. Lin, A. Armin, P. L. Burn, P. Meredith, Nat. Photonics 2015, 9, 687.
    [42] R. Qin, W. Li, C. Li, C. Du, C. Veit, H. F. Schleiermacher, M. Andersson, Z. Bo, Z. Liu, O. Inganas, U. Wuerfel, F. Zhang, J. Am. Chem. Soc. 2009, 131, 14612.
    [43] E. Zhou, J. Cong, M. Zhao, L. Zhang, K. Hashimoto, K. Tajima, Chem. Commun. 2012, 48, 5283.
    [44] X. G. Guo, N. J. Zhou, S. J. Lou, J. Smith, D. B. Tice, J. W. Hennek, R. P. Ortiz, J. T. L. Navarrete, S. Y. Li, J. Strzalka, L. X. Chen, R. P. H. Chang, A. Facchetti, T. J. Marks, Nat. Photonics 2013, 7, 825.
    [45] Y. Yao, J. H. Hou, Z. Xu, G. Li, Y. Yang, Adv. Funct. Mater. 2008, 18, 1783.
    [46] L. M. Chen, Z. R. Hong, G. Li, Y. Yang, Adv. Mater. 2009, 21, 1434.
    [47] G. Garcia-Belmonte, P. P. Boix, J. Bisquert, M. Sessolo, H. J. Bolink, Sol. Energy Mater. Sol. Cells 2010, 94, 366.
    [48] H. S. Kim, N. G. Park, J. Phys. Chem. Lett. 2014, 5, 2927.
    [49] A. Dualeh, T. Moehl, N. Tetreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, M. Gratzel, ACS Nano 2014, 8, 362.
    [50] R. S. Sanchez, V. Gonzalez-Pedro, J. W. Lee, N. G. Park, Y. S. Kang, I. Mora-Sero, J. Bisquert, J. Phys. Chem. Lett. 2014, 5, 2357.
    [51] A. K. Jena, H. W. Chen, A. Kogo, Y. Sanehira, M. Ikegami, T. Miyasaka, ACS Appl. Mater. Interfaces 2015, 7, 9817.
    [52] S. F. Xue, X. Qiu, L. Yao, L. L. Wang, M. M. Yao, C. Gu, Y. Wang, Z. Q. Xie, H. B. Wu, Org. Electron. 2015, 27, 35.
    [53] D. An, J. H. Zou, H. B. Wu, J. B. Peng, W. Yang, Y. Cao, Org. Electron. 2009, 10, 299.
    [54] Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Bredas, S. R. Marder, A. Kahn, B. Kippelen, Science 2012, 336, 327.
    [55] J. Gong, S. B. Darling, F. Q. You, Energy Environ. Sci. 2015, 8, 1953.
    [56] K. G. Lim, H. B. Kim, J. Jeong, H. Kim, J. Y. Kim, T. W. Lee, Adv. Mater. 2014, 26, 6461.
    [57] K. G. Lim, S. Ahn, H. Kim, M. R. Choi, D. H. Huh, T. W. Lee, Adv. Mater. Interfaces 2016, 3, 1500678.
    [58] K.-G. Lim, S. Ahn, Y.-H. Kim, Y. Qi, T.-W. Lee, Energy Environ. Sci. 2016, 9, 932.
    [59] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, T. C. Wen, Adv. Mater. 2013, 25, 3727.
    [60] Q. F. Xue, Z. C. Hu, J. Liu, J. H. Lin, C. Sun, Z. M. Chen, C. H. Duan, J. Wang, C. Liao, W. M. Lau, F. Huang, H. L. Yip, Y. Cao, J. Mater. Chem. A 2014, 2, 19598.
    [61] X. Liu, H. Yu, L. Yan, Q. Dong, Q. Wan, Y. Zhou, B. Song, Y. Li, ACS Appl. Mater. Interfaces 2015, 7, 6230.
    [62] H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Gratzel, N. G. Park, Nano Lett. 2013, 13, 2412.
    [63] F. Giordano, A. Abate, J. P. Correa Baena, M. Saliba, T. Matsui, S. H. Im, S. M. Zakeeruddin, M. K. Nazeeruddin, A. Hagfeldt, M. Graetzel, Nat. Commun. 2016, 7, 10379.
    [64] Z. Zhu, Y. Bai, X. Liu, C. C. Chueh, S. Yang, A. K. Jen, Adv. Mater. 2016, 28, 6478.
    [65] Q. Liu, M. C. Qin, W. J. Ke, X. L. Zheng, Z. Chen, P. L. Qin, L. B. Xiong, H. W. Lei, J. W. Wan, J. Wen, G. Yang, J. J. Ma, Z. Y. Zhang, G. J. Fang, Adv. Funct. Mater. 2016, 26, 6069.
    [66] Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang, J. You, Nature Energy 2016, 2, 16177.
    [67] W. Chen, Y. Z. Wu, Y. F. Yue, J. Liu, W. J. Zhang, X. D. Yang, H. Chen, E. B. Bi, I. Ashraful, M. Gratzel, L. Y. Han, Science 2015, 350, 944.
    [68] Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, S. Yang, Angew. Chem. Int. Ed. Engl. 2014, 53, 12571.
    [69] K. C. Wang, J. Y. Jeng, P. S. Shen, Y. C. Chang, E. W. Diau, C. H. Tsai, T. Y. Chao, H. C. Hsu, P. Y. Lin, P. Chen, T. F. Guo, T. C. Wen, Sci. Rep. 2014, 4, 4756.
    [70] J. Seo, N. J. Jeon, W. S. Yang, H. W. Shin, T. K. Ahn, J. Lee, J. H. Noh, S. I. Seok, Adv. Energy Mater. 2015, 5, 1501320.
    [71] D. Liu, T. L. Kelly, Nat. Photonics 2013, 8, 133.
    [72] D. Zhao, M. Sexton, H.-Y. Park, G. Baure, J. C. Nino, F. So, Adv. Energy Mater. 2015, 5, 1401855.
    [73] O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, H. J. Bolink, Nat. Photonics 2013, 8, 128.
    [74] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel, S. I. Seok, Nat. Photonics 2013, 7, 486.
    [75] S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Yang, J. W. Seo, S. I. Seok, Energy Environ. Sci. 2014, 7, 2614.
    [76] T. Leijtens, J. Lim, J. Teuscher, T. Park, H. J. Snaith, Adv. Mater. 2013, 25, 3227.
    [77] H. J. Snaith, M. Gratzel, Appl. Phys. Lett. 2006, 89, 262114.
    [78] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Nature 1998, 395, 583.
    [79] H. Kageyama, H. Ohishi, M. Tanaka, Y. Ohmori, Y. Shirota, Adv. Funct. Mater. 2009, 19, 3948.
    [80] Y.-q. Zheng, W. J. Potscavage, T. Komino, C. Adachi, Appl. Phys. Lett. 2013, 102, 153302.
    [81] H. Kageyama, H. Ohishi, M. Tanaka, Y. Ohmori, Y. Shirota, Appl. Phys. Lett. 2009, 94, 063304.
    [82] T. Oshiro, T. Tamura, H. Kageyama, Y. Shirota, H. Kajii, Y. Ohmori, Phys. Status Solidi C 2012, 9, 2549.
    [83] S. Y. Hsiao, H. L. Lin, W. H. Lee, W. L. Tsai, K. M. Chiang, W. Y. Liao, C. Z. Ren-Wu, C. Y. Chen, H. W. Lin, Adv. Mater. 2016, 28, 7013.
    [84] J. Bisquert, J. M. Montero, H. J. Bolink, E. M. Barea, G. Garcia-Belmonte, Phys. Status Solidi A 2006, 203, 3762.
    [85] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 1999, 401, 685.
    [86] D. Yokoyama, H. Sasabe, Y. Furukawa, C. Adachi, J. Kido, Adv. Funct. Mater. 2011, 21, 1375.
    [87] J. Endo, T. Matsumoto, J. Kido, Jpn. J. Appl. Phys. 2002, 41, 358.
    [88] J. H. Lee, D. S. Leem, J. J. Kim, Org. Electron. 2010, 11, 486.
    [89] H. S. Shim, S. Y. Kim, J. W. Kim, T. M. Kim, C. H. Lee, J. J. Kim, Appl. Phys. Lett. 2013, 102, 203903.
    [90] Y. H. Chen, C. W. Chen, Z. Y. Huang, K. T. Wong, L. Y. Lin, F. Lin, H. W. Lin, Org. Electron. 2014, 15, 1828.
    [91] J. Meyer, P. R. Kidambi, B. C. Bayer, C. Weijtens, A. Kuhn, A. Centeno, A. Pesquera, A. Zurutuza, J. Robertson, S. Hofmann, Sci. Rep. 2014, 4, 5380.
    [92] W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, O. K. Song, Org. Electron. 2008, 9, 333.
    [93] J. Ma, X. Y. Jiang, Z. Liang, J. Cao, X. Zhang, Z. L. Zhang, Semicond. Sci. Technol. 2009, 24, 035009.
    [94] M. Suh, B. Chin, M. H. Kim, T. Kang, S. T. Lee, Adv. Mater. 2003, 15, 1254.
    [95] D. H. Huh, G. W. Kim, G. H. Kim, C. Kulshreshtha, J. H. Kwon, Synth. Met. 2013, 180, 79.
    [96] C. W. Lee, J. Y. Lee, Org. Electron. 2013, 14, 370.
    [97] C. W. Chen, H. W. Kang, S. Y. Hsiao, P. F. Yang, K. M. Chiang, H. W. Lin, Adv. Mater. 2014, 26, 6647.
    [98] Q. K. Wang, R. B. Wang, P. F. Shen, C. Li, Y. Q. Li, L. J. Liu, S. Duhm, J. X. Tang, Adv. Mater. Interfaces 2015, 2, 1400528.
    [99] P. Schulz, J. O. Tiepelt, J. A. Christians, I. Levine, E. Edri, E. M. Sanehira, G. Hodes, D. Cahen, A. Kahn, ACS Appl. Mater. Interfaces 2016, 8, 31491.
    [100] B.-S. Kim, T.-M. Kim, M.-S. Choi, H.-S. Shim, J.-J. Kim, Org. Electron. 2015, 17, 102.
    [101] J. K. Bowmaker, H. J. Dartnall, J. Physiol. 1980, 298, 501.
    [102] H. J. Dartnall, J. K. Bowmaker, J. D. Mollon, Proc. Royal Soc. B 1983, 220, 115.
    [103] K. Thapan, J. Arendt, D. J. Skene, J. Physiol. 2001, 535, 261.
    [104] J. L. Schnapf, T. W. Kraft, D. A. Baylor, Nature 1987, 325, 439.
    [105] H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, 3rd, J. Xiao, S. Wang, Y. Huang, J. A. Rogers, Nature 2008, 454, 748.
    [106] S. Chen, Z. Lou, D. Chen, G. Shen, Adv. Mater. 2018, 30, 1705400.
    [107] C. Choi, M. K. Choi, S. Liu, M. S. Kim, O. K. Park, C. Im, J. Kim, X. Qin, G. J. Lee, K. W. Cho, M. Kim, E. Joh, J. Lee, D. Son, S. H. Kwon, N. L. Jeon, Y. M. Song, N. Lu, D. H. Kim, Nat. Commun. 2017, 8, 1664.
    [108] S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, F. Koppens, Nat. Photonics 2017, 11, 366.
    [109] W. Lee, J. Lee, H. Yun, J. Kim, J. Park, C. Choi, D. C. Kim, H. Seo, H. Lee, J. W. Yu, W. B. Lee, D. H. Kim, Adv. Mater. 2017, 29.
    [110] H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, K. B. Crozier, Nano Lett. 2014, 14, 1804.
    [111] T. Xu, Y. K. Wu, X. Luo, L. J. Guo, Nat. Commun. 2010, 1, 59.
    [112] S. Yokogawa, S. P. Burgos, H. A. Atwater, Nano Lett. 2012, 12, 4349.
    [113] Y.-H. Chen, C.-W. Chen, Z.-Y. Huang, W.-C. Lin, L.-Y. Lin, F. Lin, K.-T. Wong, H.-W. Lin, Adv. Mater. 2014, 26, 1144.
    [114] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.
    [115] C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, L. M. Herz, Adv. Mater. 2014, 26, 1584.
    [116] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344.
    [117] C. W. Chen, S. Y. Hsiao, C. Y. Chen, H. W. Kang, Z. Y. Huang, H. W. Lin, J. Mater. Chem. A 2015, 3, 9152.
    [118] A. Stockman, L. T. Sharpe, Vis. Res. 2000, 40, 1711.
    [119] A. Armin, R. D. Jansen-van Vuuren, N. Kopidakis, P. L. Burn, P. Meredith, Nat. Commun. 2015, 6, 6343.
    [120] Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, J. S. Huang, Nat. Photonics 2015, 9, 679.
    [121] J. Xue, Z. Zhu, X. Xu, Y. Gu, S. Wang, L. Xu, Y. Zou, J. Song, H. Zeng, Q. Chen, Nano Lett. 2018, 18, 7628.
    [122] W. L. Tsai, W. H. Lee, C. Y. Chen, S. Y. Hsiao, Y. J. Shiau, B. W. Hsu, Y. C. Lee, H. W. Lin, Nano Energy 2017, 41, 681.
    [123] H. W. Lin, Y. C. Shiau, U.S. Patent 9871217, 2018.
    [124] C. A. R. Perini, A. J. Barker, M. Sala, A. Petrozza, M. Caironi, Semicond. Sci. Technol. 2018, 33, 094004.
    [125] Y. Fang, J. Huang, Adv. Mater. 2015, 27, 2804.
    [126] P. E. Hallett, J. Opt. Soc. Am. 1987, 4, 2330.
    [127] F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, J. Huang, Nat. Nanotechnol. 2012, 7, 798.
    [128] X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, Y. Fang, Small 2016, 12, 595.
    [129] C. H. Ji, K. T. Kim, S. Y. Oh, RSC Adv. 2018, 8, 8302.
    [130] H. Zhou, J. Zeng, Z. Song, C. R. Grice, C. Chen, Z. Song, D. Zhao, H. Wang, Y. Yan, J. Phys. Chem. Lett. 2018, 9, 2043.
    [131] L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, Y. Yang, Nat. Commun. 2014, 5, 5404.
    [132] X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, A. J. Heeger, Science 2009, 325, 1665.
    [133] N. P. Smith, T. D. Lamb, Vis. Res. 1997, 37, 2943.
    [134] D. Cao, A. J. Zele, J. Pokorny, Vis. Res. 2007, 47, 1060.
    [135] X. Xu, Z. Liu, Z. Zuo, M. Zhang, Z. Zhao, Y. Shen, H. Zhou, Q. Chen, Y. Yang, M. Wang, Nano Lett. 2015, 15, 2402.
    [136] E. J. Juarez-Perez, M. Wubetaler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, I. Mora-Sero, J Phys Chem Lett 2014, 5, 680.

    QR CODE