研究生: |
陸海侖 Lu, Hai-Lun |
---|---|
論文名稱: |
以集合為索引的隨機集合部分和的強大數法則 A Strong Law of Large Numbers for Random Set Partial Sum Processes indexed by Sets |
指導教授: |
胡殿中
Hu, Tien-Chung 高淑蓉 Kao, Shu-Jung |
口試委員: |
徐南蓉
Hsu, Nan-Jung 洪慧念 Hung, Hui-Nien |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 26 |
中文關鍵詞: | 隨機集合 、強大數法則 、以集合為索引 |
外文關鍵詞: | random set, strong law of large numbers, indexed by sets |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨機集合是隨機變數和隨機元素的推廣但是更加抽象複雜。在本論文中,我們研究了以集合為索引的隨機集合部分和的強大數法則問題,並獲得了對大數法則運作的更深刻理解,對象分別是隨機緊緻集合和隨機閉集合。我們以Hausdorf metric作為收斂概念證明了針對隨機緊緻集合的以集合為索引的強大數法則。並推廣到隨機閉集合,我們在Mosco收斂和Wijsman收斂概念下證明相關以集合為索引的強大數法則。
Random sets are a generalization of random variables and random elements but are much more abstract and complicated. In this thesis, we study a problem of the strong law of large numbers (SLLN) for random set partial sum processes indexed by sets, which gives a deeper insight into how the SLLN behaves. We establish the set indexed SLLN for random compact sets with the convergence induced by the Hausdorff metric and extend the set indexed SLLN to random closed sets with respect to Mosco convergence and Wijsman convergence.
[1] E. Gine and J. Zinn, “The law of large numbers for partial sum processes indexed by sets”, The Annals of Probability, pp. 154–163, 1987.
[2] T.C. Hu, F. Moricz, and R. Taylor, “Strong laws of large numbers for arrays of rowwise independent random variables,” Acta Mathematica Hungarica, vol. 54, no. 12, pp. 153–162, 1989.
[3] N. Van Quang and L. Van Thanh, “On the strong law of large numbers under rearrangements for sequences of blockwise orthogonal random elements in Banach spaces,” Australian & New Zealand Journal of Statistics, vol. 49, no. 4, pp. 349–357, 2007.
[4] A. N. Kolmogorov, Foundations of the Theory of Probability. Chelsea, 1956.
[5] H. T. Nguyen, An introduction to random sets. CRC press, 2006.
[6] M. L. Puri and D. A. Ralescu, “Strong law of large numbers for Banach space valued random sets,” The Annals of Probability, pp. 222–224, 1983.
[7] C. Castaing, N. Quang, and D. X. Giap, “Mosco convergence of strong law of large numbers for double array of closed valued random variables in Banach space,” Journal of Nonlinear and Convex Analysis, vol. 13, no. 4, pp. 615–636, 2012.
[8] P. Terán, “A multivalued strong law of large numbers,” Journal of Theoretical Probability, vol. 29, no. 2, pp. 349–358, 2016.
[9] R. F. Bass and R. Pyke, “A strong law of large numbers for partial sum processes indexed by sets,” The Annals of Probability, pp. 268–271, 1984.
[10] A. Shapiro and H. Xu, “Uniform laws of large numbers for set-valued mappings and subdifferentials of random functions,” Journal of mathematical analysis and applications, vol. 325, no. 2, pp. 1390–1399, 2007.
[11] I. Molchanov and I. S. Molchanov, Theory of Random Sets, vol. 87. Springer, 2 ed., 2017.
[12] R. Schneider, Convex Bodies: the Brunn–Minkowski Theory. No. 151, Cambridge University Press, 2014.
[13] K. C. B. Charalambos D. Aliprantis, Infinite Dimensional Analysis. Springer, 2006.
[14] E. Mourier, “L-random elements and l*random
elements in banach spaces,” in Proc. Third Berkeley Sympos. on Math. Statist. and Prob, vol. 2, pp. 231–242, 1956.
[15] L.C. Jang and J.S. Kwon, “A uniform strong law of large numbers for partial sum processes of fuzzy random variables indexed by sets,” Fuzzy sets and systems, vol. 99, no. 1,
pp. 97–103, 1998.
[16] R. T. Rockafellar and R. J.B. Wets, Variational Analysis, vol. 317. Springer Science & Business Media, 2009.
[17] C. Hess, “The distribution of unbounded random sets and the multivalued strong law of large numbers in nonreflexive Banach spaces.,” Journal of Convex Analysis, vol. 6, no. 1, pp. 163–182, 1999.