簡易檢索 / 詳目顯示

研究生: 游璇龍
Syuan-Long You
論文名稱: 高介電常數閘極介電層電容元件之非彈性電子穿隧能譜研究
Inelastic Electron Tunneling Spectroscopy Study of Metal-Oxide-Semiconductor Device with High-κ Gate Dielectrics
指導教授: 郭瑞年
Raynien Kwo
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 90
中文關鍵詞: 非彈性穿隧高介電係數氧化鉿氧化釔氧化鉿參雜氧化釔
外文關鍵詞: inelastic tunneling, high-k, hafnium oxide, yttrium oxide, YDH
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非彈性電子穿隧能譜 (Inelastic electron tunneling spectroscopy) 具有量測穿隧電子與分子振動間的交互作用所造成的微小穿隧電流變化的能力,因此近年來已被廣泛的用來研究矽金氧半元件(Silicon MOS device)中聲子和化學鍵結的振動能譜和介電層中的缺陷,非彈性穿隧能譜是一種非破壞性的量測技術,能夠藉由觀察穿隧電子和聲子間的交互作用來研究整個穿隧元件中介電層的微結構和介面的特性。本實驗利用此量測技術研究各種高介電常數閘極氧化物包括氧化鉿、氧化釔、氧化鉿參雜氧化釔,以及層疊式氧化鉿與氧化釔的聲子能量和化學鍵結的振動能量。我們比較了經過各種不同熱處理後的氧化鉿在微結構上和介面特性上的改變,此外,我們比較了分子束磊晶(MBE)與原子層沉積(ALD)所成長氧化鉿的微結構以及介面特性的差異。經由量測分子的振動能譜我們可以研究氧化鉿在參雜氧化釔後結構上所產生的變化,此外,非彈性電子穿隧能譜也被用來研究高介電材料中外加電壓所造成的缺陷,這些缺陷會導致元件的漏電流增大,藉由觀察穿隧能譜的改變,我們能研究介電層在遭受外加電壓時缺陷產生的情況。另外,在層疊式氧化鉿與氧化釔的穿隧能譜中,我們發現一系列非常對稱的缺陷特徵曲線,經由簡單的計算我們能夠得到這些缺陷的能量以及其分布的位置,我們發現這些缺陷皆位於這兩種氧化層的介面。


    Inelastic electron tunneling spectroscopy (IETS) has been extensively applied to characterize the microstructure, trap-related states, and interfacial properties in silicon MOS system due to its unique ability to detect the interaction of tunneling electrons with energy-loss modes in the tunnel barrier. In this work, we reported the study of IETS in silicon metal-oxide-semiconductor (MOS) device with HfO2, Y2O3, YDH (yttrium-doped HfO2), and stacked HfO2/Y2O3 as gate dielectric. A systematical comparison between high-κ dielectrics thin films deposited by MBE and ALD in terms of microstructure and interfacial properties was presented in this study. The trap-related state induced by electrical stress in high-κ dielectrics thin film was also investigated by IETS spectra. The vibrational modes of HfO2 and Y2O3 from IETS measurement were identified by referring to the results from Raman, Infrared spectroscopy, and IETS by other authors. IETS technique was also applied to study the structural phase transformation in yttrium-doped HfO2 thin film. In addition to vibrational modes and chemical bonding, the location and energy level of traps contained in stacked HfO2/Y2O3 structure can be estimated by analyzing the trap-related feature in IETS spectra through a simple modeling.

    1 Introduction 1.1 High-κ dielectrics technology 1.2 Candidates for high-κ dielectrics 1.3 Tunneling spectroscopy of MOS system 1.4 Outline of the thesis 2 Tunneling Spectroscopy 2.1 Inelastic tunneling 2.2 Bias polarity dependence of tunneling spectroscopy 2.2 Bias polarity dependence of tunneling spectroscopy 2.3 Defect and trap study 2.3.1 Trap-assisted tunneling and charge trapping 2.3.2 Physical location and energy level of traps 2.3.3 Electrical stress induced defect formation in dielectric 2.4 Summary 3 Experimental Details 3.1 Device fabrication 3.2 Measurement methods 3.2.1 AC modulation technique 3.2.2 Experimental instrumentation 3.3 Dual temperature technique 3.4 Summary 4 Result and Discussion 4.1 Silicon dioxide 4.1.1 Silicon phonon modes 4.1.2 Silicon dioxide vibrational modes 4.1.3 IETS of Al/SiO2/n-typSi 4.2 Hafnium oxide 4.2.1 HfO2 vibrational modes 4.2.2 IETS spectra of HfO2 4.3 Electrical stress induced trap formation in dielectrics 4.4 Yttrium-doped HfO2 4.5 Stacked HfO2/Y2O3 4.5.1 IETS of Y2O3 4.5.1 IETS of stacked HfO2/Y2O3 4.6 Summary 5 Conclusion Reference

    [1] G. D. wilk, R. M. Wallace, J. M. Anthony, "High-k gate dielectrics: Current status and materials properties considerations," J. Appl. Phys. 89, 5243, (2001).
    [2] W. K. Lye, E. Hasegawa, T.-P. Ma, R. C. Barker, Y. Hu, J. Kuehne, and D. Frystak, "Quantitative inelastic tunneling spectroscopy in the silicon metal-oxide-semiconductor system," Appl. Phys. Lett. 71, 2523, (1997).
    [3] W. He and T. P. Ma, "Inelastic electron tunneling spectroscopy study of ultrathin HfO2 and HfAlO," Appl. Phys. Lett. 83, 2605, (2003).
    [4] M. Wang, W. He, and T. P. Ma, "Electron tunneling spectroscopy study of traps in high-κ gate dielectrics: Determination of physical location and energy levels of traps," Appl. Phys. Lett. 86, 192113, (2005).
    [5] C. Dubourdieu, E. Rauwel, C. Millon, P. Chaudouët, F. Ducroquet, N. Rochat, S. Rushworth, and V. Cosnier, "Growth by liquid-injection MOCVD and properties of HfO2 films for microelectronic applications," Chem. Vap. Deposition 12, 187, (2006).
    [6] K. Kita, K. Kyuno, and A. Toriumi, "Permittivity increase of yttrium-doped HfO2 through structural phase transformation," Appl. Phys. Lett. 86, 102906, (2005).
    [7] F. Zhu, S. J. Rhee, C. Y. Kang, C. H. Choi, M. S. Akbar, S. A. Krishnan, M. Zhang, H. S. Kim, T. Lee, Injo Ok, and J. C. Lee, "Improving channel carrier mobility and immunity to charge trapping of high-κ NMOSFET by using stacked Y2O3/HfO2 gate dielectric," IEEE Electron Device Lett. 26, 876, (2005).
    [8] F. Zhu, C. Y. Kang, S. J. Rhee, C. H. Choi, S. A. Krishnan, M. Zhang, H. S. Kim, T. Lee, Injo Ok, G. Thareja, and J. C. Lee, "Mechanism of improved channel carrier mobility for stacked Y2O3/HfO2 gate dielectric," Appl. Phys. Lett. 89, 173501, (2006).
    [9] R. C. Jaklevic and J. Lambe, "Molecular vibration spectra by electron tunneling," Phys. Rev. Lett. 17, 1139, (1966).
    [10] J. Lambe and R. C. Jaklevic, "Molecular vibration spectra by inelastic electron tunneling," Phys. Rev. 165, 821, (1968).
    [11] R. C. Jaklevic and J. Lambe, "Inelastic tunneling due to vibrational modes of yttrium and chromium oxide," Phys. Rev. B 2, 808, (1970).
    [12] D. E. Cullen, E. L. Wolf, and W. Dale Comptom, "Tunneling spectroscopy in degenerate p-type silicon," Phys. Rev. B 2, 3157, (1970).
    [13] C. Petit and G. Salace, "Inelastic electron tunneling spectroscopy to characterize metal-oxide-semiconductor devices with ultrathin oxides," Rev. Sci. Instrum. 74, 4462, (2003).
    [14] M. Wang, W. He, and T. P. Ma, "Electron tunneling spectroscopy study of amorphous films of the gate dielectric candidates LaAlO3 and LaScO3," Appl. Phys. Lett. 90, 053502, (2007).
    [15] W. He and T. P. Ma, "Inelastic electron tunneling spectroscopy study of traps in ultrathin high-κ gate dielectrics," Appl. Phys. Lett. 83, 5461, (2003).
    [16] Huang, Chien-Chung, Inelastic electron tunneling spectroscopy study on MBE-grown HfO2 Metal-Oxide-Semiconductor System, M.S. thesis, Phys. Dept., National Tsing Hua Univ., Hsinchu, Taiwan, (2006).
    [17] T. Wolfram, eds., Inelastic Electron Tunneling Spectroscopy, Springer-Verlag Berlin Heidelberg, (1978), pp.2-12.
    [18] Wei He, Electron tunneling spectroscopy of silicon metal-oxide- semiconductor system with thin gate dielectric, Ph.D. dissertation, Yale University, (2005), pp.124-125.
    [19] Paul K. Hansma, Tunneling Spectroscopy-Capabilities, Applications, and New Technique, Plenum Press, New York and London, (1982).
    [20] Whye-Kei Lye, Inelastic Electron tunneling spectroscopy of silicon metal-oxide- semiconductor system, Ph.D. dissertation, Yale University, (1998), pp.42-46.
    [21] C. Petit, G. Salace, and D. Vuillaume, "Aluminum, oxide, and silicon phonons by inelastic electron tunneling spectroscopy on metal-oxide -semiconductor tunnel junctions: Accurate determination and effect of electrical stress," J. Appl. Phys. 96, 5042, (2004).
    [22] D. G. Walmsley, R. B. Floyd, and S. F. J. Read, "Inelastic electron tunneling spectral line shapes below 100 mK," J. Phys. C: Solid State Phys. 11, L107, (1978).
    [23] W. Weber, "Adiabatic bond charge model for the phonons in diamond, Si, Ge, and α-Sn," Phys. Rev. B 15, 4789, (1977).
    [24] B. N. Brockhouse, "Lattice vibrations in silicon and germanium," Phys. Rev. Lett. 2, 256, (1959).
    [25] A. G. Ghynoweth, R. A. Logan, and D. E. Thomas, "Phonon-Assisted Tunneling in Silicon and Germanium Esaki Junctions," Phys. Rev. 125, 877, (1962).
    [26] Whye-Kei Lye, Inelastic Electron tunneling spectroscopy of silicon metal-oxide- semiconductor system, Ph.D. dissertation, Yale University, (1998), pp.58-82.
    [27] C. T. Kirk, "Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica," Phys. Rev. B 38, 1255, (1988).
    [28] M. K. Gunde, "Vibrational modes in amorphous silicon dioxide," Physica B 292, 286, (2000).
    [29] Huang, Chien-Chung, Inelastic electron tunneling spectroscopy study on MBE-grown HfO2 Metal-Oxide-Semiconductor System, M.S. thesis, Phys. Dept., National Tsing Hua Univ., Hsinchu, Taiwan, (2006), pp.45-53.
    [30] P. Balk, S. Ewert, S. Schmitz, A. Steffen, "Tunneling spectroscopy on metal- insulator- silicon structures with very thin insulating layers" J. Appl. Phys. 69, 6510, (1991).
    [31] J. P. Carbotte and R. C. Dynes, "Low-temperature - resistivity of solid aluminum," Phys. Lett. 25A, 685, (1976).
    [32] B. Mark, K. Mistry, S. Smith, "Intel Demonstrates High-k + Metal Gate Transistor Breakthrough on 45 nm Microprocessors," intel, (2007).
    [33] B. K. Kim, H. Hamaguchi, "Raman spectrum of 18O-labbelled Hafnia," Mat. Res. Bull. 32, 1367, (1997).
    [34] P. E. Quintard, P. Barbéris, A. P. Mirgorodsky, and T. Merle-Méjean, "Comparative Lattice-Dynamical Study of the Raman Spectra of Monoclinic and Tetragonal Phases of Zirconia and Hafnia," J. Am. Ceram. Soc, 85, 1745, (2002).
    [35] X. Zhao, D. Vanderbilt, "First-principle study of structural, vibrational, and lattice dielectric properties of hafnium oxide," Phys. Rev. B 65, 233106, (2002).
    [36] H. Arashi, "Pressure-induced phase transformation of HfO2," J. Am. Cream. Soc, 75, 844, (1992).
    [37] H. Fujimori, M. Yashima, M. Kakihana, and M. Yoshimura, "In situ Raman study on the phase transition of hafnia up to 2085K," J. Am. Ceram. Soc, 84, 663, (2001).
    [38] V. Cosnier, M. Olivier, G. Théret, and B. Andre, "HfO2– SiO2 interface in PVD coatings," J. Vac. Sci. Technol. A, 19, 2267, (2001).
    [39] D. A. Neumayer, and E. Cartier, "Materials characterization of ZrO2– SiO2 and HfO2– SiO2 binary oxides deposited by chemical solution deposition," J. Appl. Phys. 90, 1801, (2001).
    [40] H. G. Busmann, S. Ewert, W. Sander, and K. Seibert, "Inelastic tunneling spectroscopy on MOS structures with very thin oxide films," Z, Phys. B, 59, 439, (1985).
    [41] W. J. Zhu, T. P. Ma, S. Zafar, and T. Tamagawa, "Charge trapping in ultrathin hafnium oxide," IEEE, Electron Device Lett. 23, 597, (2002).
    [42] E. Rauwel, C. Dobourdieu, B. Holländer, N. Rochat, F. Ducroquet, M. D. Rossell, G. V. Tendeloo, and B. Pelissier, "Stabilization of the cubic phase of HfO2 by Y addition in films grown by metal organic chemical vapor deposition," Appl. Phys. Lett. 89, 012902, (2006).
    [43] Z. K. Yang, W. C. Lee, Y. J. Lee, P. Chang, M. L. Huang, M. Hong, C.-H. Hsu, and J. Kwo, "Cubic HfO2 doped with Y2O3 epitaxial films on GaAs (001) of enhanced dielectric constant," Appl. Phys. Lett. 90, 152908, (2007).
    [44] M. Yashima, H. Takahashi, K. Ohtake, T. Hirose, M. Kakihana, H. Arashi, Y. Ikuma, Y. Suzuki, and M. Yoshimuram, "Formation of metastable forms by quenching of the HfO2-RO1.5 melts (R=Gd, Y, and Yb)," J. Phys. Chem. Solids 57, 289, (1995).
    [45] H. Fujimori, M. Yashima, S. Sasaki, M. Kakihana, T. Mori, M. Tanaka, M. Yoshimura, "Cubic-tetragonal phase change of yttria-doped hafnia solid solution: high-resolution X-ray diffraction and Raman scattering," Chem. Phys. Lett. 346, 217, (2001).
    [46] Y. Repelin, C. Proust, E. Husson, and J. M. Beny, "Vibrational spectroscopy of the C-form of yttrium sesquioxide," J. Solid State Chem. 118, 163, (1995).
    [47] J. J. Chambers and G. N. Parsons, "Physical and electrical characterization of ultrathin yttrium silicate insulators on silicon," J. Appl. Phys. 90, 918, (2001).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE