簡易檢索 / 詳目顯示

研究生: 朱育萱
Chu, Yu-hsuan
論文名稱: 六十秭赫正交分頻多工多波束室內通訊系統之延伸效能分析
Extended Performance Analysis of 60 GHz OFDM-Based Multibeam Indoor Communication Systems
指導教授: 趙啟超
口試委員: 吳文榕
蘇育德
邱茂清
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 111
中文關鍵詞: 六十秭赫正交分頻多工波束成型
外文關鍵詞: 60 GHz, OFDM, beam-forming
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於高速室內無線通訊的需求提高,六十秭赫頻帶的通訊技術受到極高的關注。利用此頻帶通訊的優勢包含高傳輸速率及廣大的無需執照頻寬。然而,在無線傳輸系統下,六十秭赫電磁波的短波長特性導致嚴重的路徑耗損。為了降低路徑耗損,可以採用正交分頻多工(orthogonal frequency-division multiplexing, OFDM)搭配波束成型技術來彌補。此外,使用波束成型技術產生多波束,再利用多波束傳輸多個訊息串,達到增加系統容量的目的。
    在本論文中,我們將多波束成型正交分頻多工系統應用於六十秭赫頻帶。由於IEEE 802.15.3c的通道模型對於六十秭赫通道路徑的時空分布有明確的定義,因此採用此通道模型。針對通道路徑時間及空間的隨機特性,我們藉由精確的數學分析來取得路徑的平均效應,進而求得系統的訊號干擾雜訊比(signal-to-interference-plus-noise ratio, SINR)以及容量邊界。同時,以直觀角度設計多波束成型方法來增加系統的傳輸量。接著利用數值模擬來驗證數學分析的可靠性。最後,利用分析的結果來探討不同波束成型方法對系統的影響。


    For the increasing demand for high-rate indoor wireless communications, 60 GHz frequency bands have attracted much attention. The advantages of 60 GHz bands include high data
    rates and wide unlicensed bandwidth which is available worldwide. However, small wavelength of 60 GHz bands causes high path loss. To mitigate the path loss and increase the
    system capacity, the multibeam beam-forming orthogonal frequency-division multiplexing (OFDM) technique can be applied.
    In the thesis, multibeam beam-forming OFDM systems in 60 GHz bands are considered. The IEEE 802.15.3c channel model which describes the statistical behavior of 60 GHz channels
    in temporal and spatial domains is employed. One of our contributions is to characterize the effect of random multipaths in 60 GHz systems by exact mathematical analysis. Based on the analysis, some multi-stream beam-forming schemes are devised to enhance the system capacity. Precise system analysis is verified by numerical simulations. Finally, performance of different beam-forming schemes are discussed and compared.

    Abstract i Contents ii 1 Introduction 1 2 60 GHz Indoor Channel and System Models 5 2.1 Overview of 60 GHz Indoor Channel Models 5 2.2 OFDM System Models 10 3 Exact Performance Analysis 25 3.1 Performance Analysis 25 3.2 Exact Channel Statistics 32 4 Numerical and Simulation Results 84 4.1 Exactness of Analytical SINR 85 4.2 Performance Comparison between Beam-Forming Schemes 94 4.3 Effects of Channel Parameters 100 5 Conclusion 108

    [1] N. Guo, R. C. Qiu, S. S. Mo, and K. Takahashi, “60-GHz millimeter-wave radio: Principle, technology, and new results,” EURASIP J. on Wireless Commun. and Networking,
    vol. 2007, no. 1, pp. 1–8, Jan. 2007.

    [2] S. Yoon, T. Jeon, and W. Lee, “Hybrid beam-forming and beam-switching for OFDM based wireless personal area networks,” IEEE J. Sel. Areas Commun., vol. 27, no. 8,
    pp. 1425–1432, Oct. 2009.

    [3] Z. Lin, X. Peng, and F. Chin, “Enhanced beamforming for 60GHz OFDM system with co-channel interference mitigation,” in Proc. IEEE Int. Ultra-Wideband Conf., Bologna
    Italy, Sep. 2011, pp. 29–33.

    [4] T.-T. Zhang, X.-T. Cheng, G.-R. Yue, and S.-Q. Li, “A new beamforming for 60GHz wireless system with an adaptive approach,” in Proc. IET Int. Commun. Tech. and Application Conf., Beijing China, Oct. 2011, pp. 66–70.

    [5] S.-K. Yong, et al., “TG3c channel modeling sub-committee final report,” IEEE doc.:IEEE 802.15-07-0584-01-003c, Sep. 2010.

    [6] A. Seyedi, “Water-filling capacity of wide band 60GHz channels with antenna directionality,” in Proc. IEEE Int. Ultra-Wideband Conf., Singapore, Sep. 2007, pp. 117–122.

    [7] ——, “On the capacity of wideband 60GHz channels with antenna directionality,” in Proc. IEEE Global Commun. Conf., Washington, DC, Nov. 2007, pp. 4532–4536.

    [8] C.-S. Choi, M. Elkhouly, E. Grass, and C. Scheytt, “60-GHz adaptive beamforming receiver arrays for interference mitigation,” in Proc. IEEE 21st Int. Symp. Personal
    Indoor and Mobile Radio Commun., Instanbul Turkey, Sep. 2010, pp. 762–767.

    [9] X. Zhu, A. Doufexi, and T. Kocak, “On the performance of IEEE 802.15.3c millimeterwave WPANs: PHY and MAC,” in Proc. 6th Conf. Wireless Advanced, London, UK, Jun. 2010, pp. 1–6.

    [10] B. Li, Z. Zhou, W. Zou, X. Sun, and G. Du, “On the efficient beam-forming training for 60GHz wireless personal area networks,” IEEE Trans. Wireless Commun., vol. 12, no. 2, pp. 504–515, Feb. 2013.

    [11] W.-D. Wu, “A unified analytical framework for ultra-wideband communications,” Ph. D. thesis, Inst. Commun. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan, 2008.

    [12] Y.-C. Chen, “Performance analysis of multibeam OFDM systems over 60 GHz indoor channels,” M.S. thesis, Inst. Commun. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan,
    2012.

    [13] Y. Gao and M. Schubert, “Group-oriented beamforming for multi-stream multicasting based on quality-of-service requirements,” in Proc. IEEE Int. workshop Computational Advances in Multi-Sensor Adaptive Processing, Puerto Vallarta, Mexico, Dec. 2005, pp.
    193–196.

    [14] A. Oborina, M. Moisio, and V. Koivunen, “Performance of mobile MIMO OFDM systems with application to UTRAN LTE downlink,” IEEE Trans. Wireless Commun., vol. 11, no. 8, pp. 2696–2706, Aug. 2012.

    [15] E. P. C. Kao, An Introduction to Stochastic Processes. Belmont, CA: Duxbury Press,1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE