研究生: |
陳奕丞 Chen, Yi-Cheng |
---|---|
論文名稱: |
二能階原子系統中單光子吸收之量子操控 Quantum control of single-photon absorption in two-level atoms |
指導教授: |
褚志崧
Chuu, Chih-Sung |
口試委員: |
王立邦
Wang, Li-Bang 劉怡維 Liu, Yi-Wei |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | 量子通訊 、量子資訊 、相位調製 、展頻技術 、原子吸收 |
外文關鍵詞: | Quantum Communication, Quantum Information, Phase Modulation, Spread Spectrum Technology, Atomic Absorption |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在古典通訊中,展頻技術可以有效增加資訊傳輸過程中的隱匿性與安全性,因此 我們試著將此技術應用於量子通訊上,希望此方法同樣可以增加量子通訊的安全性。 實驗上會以高頻的隨機訊號對 SPDC (spontaneous parametric down-conversion) 產生之 窄頻單光子的波包進行相位調製,使其頻寬由 5.2 MHz 展至 10 GHz,讓單光子能免於 被躍遷頻率同其頻率的原子吸收或偵測,達到隱形斗篷的效果,可增加光子在傳輸過 程中的隱匿性,提升量子傳輸與量子密鑰分發之安全性。
未經調製的單光子在原子的吸收頻率上時會幾乎 100% 被吸收,實驗上我們將光子 的頻寬從 2 GHz 展至 10 GHz,可讓吸收率從 70% 降至 30%,從此結果可了解,光子 的頻寬越高能有越好的隱匿性,而提升安全性與傳輸效率。
In classical communication, spread spectrum technology is an effective way to improve the security in transmission process. We try to implement this technology in quantum communication as well. In our experiment, we have used synchronized high-speed electro- optic modulators to modulate the phase of resonant single photon and biphoton wave packets, which are generated from cavity enhanced SPDC (spontaneous parametric down- conversion) and broaden their bandwidths from 5.2 MHz to 10 GHz for avoiding photons being absorbed or detected by the atoms. The reduced absorption is like imposing an invisible cloak over a photon, improving the confidentiality during the transmission process in order to improve the security of quantum communication and key distribution.
In principle, atoms will absorb on-resonant narrowband (smaller than natural linewidth) single photons in our experiment. we broadened the bandwidth of the photon to a wide range between 2 10 GHz, with the absorption rate decreasing to 70 30% By these results, our work shows that, for transmitted photons, the higher the bandwidth, the higher the confidentiality.
[1] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread spectrum communica- tions. Computer science press Rockville, MD, 1985, vol. 1.
[2] R. Pickholtz, D. Schilling, and L. Milstein, “Theory of spread-spectrum communications-a tutorial,” IEEE transactions on Communications, vol. 30, no. 5, pp. 855–884, 1982.
[3] C. Belthangady, C.-S. Chuu, A. Y. Ite, G. Yin, J. Kahn, and S. Harris, “Hiding single pho- tons with spread spectrum technology,” Physical review letters, vol. 104, no. 22, p. 223 601, 2010.
[4] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys., vol. 74, pp. 145–195, 1 Mar. 2002. doi: 10.1103/RevModPhys.74.145. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.74.145.
[5] K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett., vol. 89, p. 037 902, 3 Jun. 2002. doi: 10.1103/PhysRevLett.89.037902. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.89.037902.
[6] C.-S. Chuu, T. Strassel, B. Zhao, M. Koch, Y.-A. Chen, S. Chen, Z.-S. Yuan, J. Schmied- mayer, and J.-W. Pan, “Quantum memory with optically trapped atoms,” Phys. Rev. Lett., vol. 101, p. 120 501, 12 Sep. 2008. doi: 10.1103/PhysRevLett.101.120501. [Online]. Avail- able: https://link.aps.org/doi/10.1103/PhysRevLett.101.120501.
[7] C.-S. Chuu, G. Yin, and S. Harris, “A miniature ultrabright source of temporally long, narrowband biphotons,” Applied Physics Letters, vol. 101, no. 5, p. 051 108, 2012.
[8] C.-H. Wu, T.-Y. Wu, Y.-C. Yeh, P.-H. Liu, C.-H. Chang, C.-K. Liu, T. Cheng, and C.-S. Chuu, “Bright single photons for light-matter interaction,” Physical Review A, vol. 96, no. 2, p. 023 811, 2017.
[9] P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett., vol. 101, p. 103601, 10 Sep. 2008. doi:10.1103/ PhysRevLett.101.103601. [Online]. Available: https://link.aps.org/doi/10.1103/ PhysRevLett.101.103601.