簡易檢索 / 詳目顯示

研究生: 王琮瑋
Wang, Tsorng-Wei
論文名稱: 疊層複合材料中疲勞裂縫成長之電腦模擬
Computer Simulation on the Growth of Fatigue Crack in Laminate Composites
指導教授: 蔣長榮
Chiang, Chun-Ron
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 83
中文關鍵詞: 應力強度因子門限值古典層板理論蒙地卡羅法正向應力規則平均拉伸強度扭絞裂縫破裂韌度
外文關鍵詞: Stress Intensity Factor, Threshold Value, Classical Lamination Theory, Monte-Carlo Method, Normal Stress Criterion, Average Tensile Strength, Kinked Crack, Fracture Toughness
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 材料的疲勞破壞經常發生於週次循環應力作用下,而大部分的材料疲勞破壞均始於一微小疲勞裂縫之萌生及其成長。本文乃在於研究裂縫之疲勞成長,探討裂縫於不同的材料,不同的纖維方向,不同的初始裂縫長度及不同的應力作用時之成長特性。由於,在異向性材料(Anisotropic Material)中,不同方向上之拉伸強度(Tensile Strength)並不相同,因而對疲勞裂縫之成長影響甚鉅,所以在本文中利用正向應力規則(Normal Stress Criterion),假設裂縫在不同方向上延伸之機率正比於該方向上的環周應力與拉伸強度之比值,以此作為疲勞裂縫成長方向選取之依據。在本文研究中,假設每一單層板(Lamina)的厚度均相同,並且以上下對稱的方式黏結而成一複合材料疊層板(Laminate),並將其視為一個整體平板,利用複合材料力學的理論公式,計算出電腦模擬所需之材料常數。為了簡化問題,吾人假設裂縫均以第Ⅰ型(張裂型)的破裂方式朝著幾個離散方向進行延伸,並且根據蒙地卡羅法的理論,藉由亂數產生器所產生的隨機亂數值,來選擇裂縫成長的方向。
    接著,藉由他人的實驗數據,經過適當地修正換算及假設後,得到程式模擬所需的材料常數值,並且利用蔣長榮教授所提出的疲勞裂縫成長公式,將其撰寫成電腦程式,開始進行電腦數值模擬。

    透過電腦數值的模擬,可以得到疲勞裂縫的成長曲線圖及其疲勞拉伸壽命。由模擬結果可知,疲勞裂縫大致上仍沿著主裂縫方向進行延伸,在裂縫成長初期,疲勞裂縫以非常緩慢的速率穩定地成長,隨著裂縫長度不斷地增長,使得裂縫開始呈現快速且不穩定的成長。

    最後吾人以本文所選用的材料為例,將電腦模擬所得之數據結果,經過適當的處理,並且利用統計迴歸分析中的最小平方法(Least-Square Method),計算得到一近似的疲勞裂縫拉伸壽命預測公式。提供他人一種對於其它複合材料或其它纖維堆疊方向得到該預測公式的方法。


    The fatigue failure of materials, which usually occurs on the loading of cyclic stress, almost starts on the initiation and growth of small fatigue crack. This study investigates the growth of fatigue cracks, and analyzes the phenomena of crack growth in different materials, different fiber orientations, different initial crack lengths, and different loadings. Owing to anisotropy of materials, the tensile strengths of different orientations are not equivalent, and this greatly affects the growth of fatigue crack. So the Normal Stress Criterion is assumed in this study. The probabilities of crack growth in different directions are assumed to be proportional to the ratio of the normal tensile stress and tensile strength in the prospect direction. In this study, the thickness of each ply is supposed to be the same and cohere to a composite Laminate symmetrically, and can be taken as an anisotropic plate. Using the formulae of composite material mechanics to calculate the material constants necessary for computer simulations. In order to simplify the problem, it is assumed the cracks may extend in one of several possible directions, and let the random numbers generated by random number producer to select the direction of crack growth.
    The experimental data of the material T300/5208 has been used to calculate the material constants that are needed for computer simulation.

    In the computer simulation, we can get the da/dN vs. ΔK curve and predict the fatigue life conveniently. The results indicate that fatigue cracks still extend toward the orientation of main crack. In the initial stage of crack growth, the fatigue crack grows very slowly and steady. As the crack length increasing, the growth of the fatigue crack becomes quickly and unsteady.

    Finally, the results of computer simulation are summarized through Least-Square Method to find the regression formulae of the life of fatigue cracks.

    摘要.........................................................i Abstract....................................................ii 誌謝.......................................................iii 目錄........................................................iv 圖表目錄....................................................vi 第一章 緒論..................................................1 1.1 前言....................................................1 1.2 研究動機與目的..........................................2 1.3 文獻回顧................................................3 第二章 基本理論..............................................7 2.1 複合材料力學............................................7 2.1.1 單層板之材料等效彈性模數............................7 2.1.2 單層板之應力-應變關係..............................9 2.1.3 古典層板理論.......................................13 2.1.3.1 疊層板各層的應力................................13 2.1.3.2 疊層板的合力與合力矩............................16 2.2 蒙地卡羅法介紹.........................................19 2.3 亂數產生器.............................................21 2.4 隨機變數模擬的原理.....................................22 第三章 疲勞裂縫成長之理論基礎與研究方法.....................23 3.1 裂縫之破裂型式簡介.....................................23 3.2 疲勞裂縫穩定成長公式之推導.............................24 3.3 應力強度因子K值的決定..................................28 3.4 疲勞裂縫成長方向之選取.................................31 3.5 裂縫在不同方向延伸的大小...............................36 3.6 程式撰寫流程圖.........................................40 第四章 電腦模擬所需之材料常數的求取與決定...................41 4.1 單層板等效彈性模數的求取...............................42 4.2 破裂韌度Kic與材料常數值之求取及拉伸強度之決定..........43 4.3 疲勞裂縫成長公式係數之求取.............................46 第五章 結果與討論...........................................49 第六章 結論.................................................80 參考文獻....................................................81

    1. Paris, P. C., Gomez, M. P., and Anderson, W. P., “A
    Rational Analytic Theory of Fatigue,” The Trend in
    Engineering, Vol. 13, pp. 9-14, 1961.
    2. Paris, P. C. and Erdogan, F., “A Critical Analysis of
    Crack Propagation Laws,” Journal of Basic Engineering,
    Vol. 85, pp. 528-534, 1963.
    3. Knott, J. F., Fundamentals of Fracture Mechanics,
    Butterworths, 1973.
    4. Schijve, J. and Broek, D., “The Influence of the Mean
    Stress on the Propagation of Fatigue Cracks in Aluminum
    Alloy Sheets,” Nat. Aerospace TR-M-21111, 1963.
    5. Walker, E. K., “Effects of Environments and Complex Load
    History on Fatigue Life,” ASME STM 462, pp. 1-14, 1970.
    6. Foreman, R. G., Keary, V. E., and Engle, R. M., “Numerical
    Analysis of Crack Propagation in Cyclic-Loaded
    Structures,” Journal of Basic Engineering, Vol. 89, pp.
    459-464, 1967.
    7. Donahue, R. J., Clark, H. M., Atanmo, P., Kumble, R., and
    McEvily, A. J., “Crack Opening Displacement and the Rate
    of Fatigue Crack Growth,” International Journal of
    Fracture Mechanics, Vol. 8, pp. 209-219, 1972.
    8. McEvily, A. J., “On Closure in Fatigue Crack Growth,”
    ASTM STP 982, American Society for Testing and Materials,
    Philadelphia, pp. 35-43, 1988.
    9. Chiang, C. R., “A Unified Theory of Fatigue and Crack
    Growth: A Statistical Approach,” International Journal of
    Fracture, Vol. 53, pp. 337-342, 1992.
    10. Chiang, C. R., “Numerical Simulation on Fracture Behavior
    of Materials,” 國科會專題研究計畫成果報告 NSC 86-2212-E007-
    006.
    11. Gibson, R. F., Principles of Composite Material Mechanics,
    McGraw-Hill International Editions, 1994.
    12. Jones, R. M., Mechanics of Composite Materials, McGraw-
    Hill, 1975.
    13. Hopkins, D. A. and Chamis, C. C., “A Unique Set of
    Micromechanics Equations for High-Temperature Metal Matrix
    Composites,” Testing Technology of Metal Matrix
    Composites, ASTM STP 964, P. R. DiGiovanni and N. R. Adsit,
    Eds., American Society for Testing and Materials,
    Philadelphia, pp. 159-176, 1988.
    14. Lewis, P. A. W., Goodmen, A. S., and Miller, J. M., “A
    Pseudo Random Number for the System/360,” IBM Syst. J.,
    Vol. 8, pp. 136-146, 1969.
    15. 吳鴻杰,〝導電短纖維在絕緣基材內整體導電率的計算〞,碩士論
    文, 國立清華大學,1989。
    16. 黃郁青,〝裂縫的疲勞成長電腦模擬〞,碩士論文,國立清華大學,
    1999。
    17. Tada, H., Paris, P. C., and Irwin, G. R., The Stress
    Analysis of Cracks Handbook (2nd Ed.), Paris Productions,
    Inc., St. Louis, 1985.
    18. Anderson, T. L., Fracture Mechanics Fundamentals and
    Applications, CRC Press, Inc., 1995.
    19. Delale, F. and Erdogan, F., “The Problem of Internal and
    Edge Cracks in An Orthotropic Strip,” Journal of Applied
    Mechanics: Transactions of The ASME, Vol. 44, Series E, No.
    2, pp. 237-242, 1977.
    20. Buczek, M. B. and Herakovich, C. T., “A Normal Stress
    Criterion for Crack Extension Direction in Orthotropic
    Composite Materials,” Journal of Composite Materials, Vol.
    19, pp. 544-553, 1985.
    21. Knorr, D. B., “Modeling the Texture Dependence of
    Environmentally Assisted Growth of Long and Short Cracks,”
    Metall. Trans. A 19A, 1009-1019, 1988.
    22. Chiang, C. R., “Kinked Cracks in An Anisotropic
    Material,” Engineering Fracture Mechanics, Vol. 39, No. 5,
    pp. 927-930, 1991.
    23. Sohi, M. M., Hahn, H. T., and Williams, J. G., “The Effect
    of Resin Toughness and Modulus on Compressive Failure Modes
    of Quasi-Isotropic Graphite/Epoxy Laminates,” Toughness
    Composites, ASTM STP 937, Norman J. John-ston, Ed.,
    American Society for Testing and Materials, Philadelphia,
    pp. 37-60, 1987.
    24. Ramkumar, R. L. and Whitcomb, J. D., “Characterization of
    Mode I and Mixed-Mode Delamination Growth in T300/5208
    Graphite/Epoxy,” Delamination and Debonding of Materials,
    ASTM STP 876, W. S. Johnson, Ed., American Society for
    Testing and Materials, Philadelphia, pp. 315-335, 1985.
    25. Leibowitz, H., Fracture: An Advanced Treatise Volume Ⅱ,
    Academic Press, New York and London, 1968.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE