研究生: |
邱依德 Chiu, Yi-Te |
---|---|
論文名稱: |
氧化鋅摻雜鋁高壓下相變之研究 The Phase Transitions of Aluminum Doped Zinc Oxide Under High Pressure |
指導教授: | 林志明 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
中文關鍵詞: | 氧化鋅 、氧化鋅摻雜鋁 、高壓 、相變 、相變機制 、X光繞射 |
外文關鍵詞: | ZnO, ZnO doped Al, high pressure, phase transition, phase transition model, x-ray diffraction |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗在國家同步輻射研究中心(National Synchrotron Radiation Research Center:NSRRC)-BL01C1實驗站,利用X-ray 繞射角度擴散分析(angle-dispersive x-ray diffraction, ADXRD)對以化學沉澱法製備之奈米氧化鋅摻雜3%鋁(Aluminum doped ZnO, Zn0.97Al0.03O)進行高壓實驗,研究Zn0.97Al0.03O在常溫高壓下相變的情形。
實驗中,將Zn0.97Al0.03O由常壓加壓至19.20 GPa,研究結果顯示,Zn0.97Al0.03O由纖鋅礦結構(würtzite structure, B4) 轉變成氯化鈉相結構(rocksalt structure, B1)的相變起始壓力為9.02 GPa,相變完成的壓力為16.54 GPa,比前人所研究之奈米氧化鋅相變起始壓力9.3~13.7 GPa更為提早,顯示鋁的摻雜影響氧化鋅晶體結構的穩定性。
本研究觀察出,在加壓過程中,纖鋅礦結構的c軸比a軸更容易被壓縮,在相變發生前,c/a 值逐漸下降,平行c軸的鋅氧之間的鍵長幾乎沒有改變,而相變開始後c/a 值逐漸上升,鋅氧之間的鍵長也增加,直到相變完成,與前人所提出氧化鋅相變模型的「hexagonal」路徑相符合。
This experiment is to study phase transition of Zn0.97Al0.03O(3% Aluminum doped ZnO, Zn0.97Al0.03O)under the room temperature and high pressure. The Zn0.97Al0.03O is prepared by chemical precipitation method then analyzed through high pressure experiment by angle-dispersive x-ray diffraction(ADXRD) in LAB-BL01C1 of National Synchrotron Radiation Research Center (NSRRC).
Zn0.97Al0.03O was pressurized from ambient to 19.20 GPa in this experiment. The phase transition from the würtzite-type (B4) to the rocksalt-type (B1) phase started at 9.02 GPa and completed at 16.54 GPa. The initial transition pressure of Zn0.97Al0.03O is earlier than the formal conclusion 9.3~13.7 GPa. It indicates that Al doped influence the stability of Zn0.97Al0.03O structure.
From the result of the research, c axis is compressed more easily than a axis. Before the phase transition, c/a ratio decreases gradually but the bond length between Zn and O parallel to the c axis changes slightly. As soon as the phase transition starts, the c/a ratio and the bond length between Zn and O increase till the completion of the phase transition. The Zn0.97Al0.03O phase transition model through hexagonal path meets the result of formal research.
[1] R. R. Reeber, J. Appl. Phys. 41, 5063 (1970).
[2] 葉志鎮,氧化鋅半導體材料摻雜技術與應用,浙江大學出版社(2009)
[3] 張凱,馬豔,範敬輝,譚雲, 低發射率紅外隱身塗料研究進展. 化學推進劑與高分子材料, 6(1): 21-25 (2008)
[4] Y. Tanaka, T. Ifuku, K. Tsuchida and A. Kato, J. Mater. Sci. Lett. 16, 2, 155-157 (1997).
[5] K. P. Ong, D. J. Singh, and P. Wu, Phys. Rev. B 83, 115110 (2011).
[6] 余樹楨,晶體之結構與性質,渤海堂文化事業有限公司,中華民國89 年5 月
[7] E.A. Skrabek, and J. W. McGrew,“Pioneer 10 and 11 RTG Performance Update”, on Space Nuclear Power Systems 1987, 7,Orbit Book Co., Malabar, Florida, p.587 (1988).
[8] I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B, 56, R12685 (1997).
[9] S. Hébert, S. Lambert, D. Pelloquin, and A. Maignan, Phys. Rev. B, 64, 172101 (2001).
[10] G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. -P. Fleurial, T. Caillat, Inter. Mater. Rev. 48(1), 45-66 (2003).
[11] 朱旭山,「熱電材料與元件之發展與應用」,工業材料雜誌,220 期,第93-103 頁(2005)。
[12] T. Caillat, J. -P. Fleurial, “Zn-Sb alloys for thermoelectric power generation”, Energy Conversion Engineering Conference, IECEC 96., Proceedings of the 31st Intersociety, 2, 905-909 (1996).
[13] F. K. Shan, Y. S. Yu, Journal of the European Ceramic Society, 24, 6, 1869−1872 (2004) .
[14] http://pesec.t.kyoto-u.ac.jp/ematerial/research/zno/znofig/mist_zno_photo.jpg
[15] http://www.lightworksfoundation.org/led-diagram.jpg
[16] H. Sheng, N. W. Emanetoglu, S. Muthukumar, B. V. Yakshinskiy, S. Feng, and Y. Lu, J. Electronic Materials, 32, 9, 935-938 (2003).
[17] Han-Ki Kim, Sang-Heon Han, and Tae-Yeon Seong, Appl. Phys. Lett. 77, 1647 (2000).
[18] Han-Ki Kim, Kyoung-Kook Kim, Seong-Ju Park, Tae-Yeon Seong, and Ilesanmi Adesida, J. Appl. Phys. 94, 4225 (2003).
[19] Y. G. Wanga, S. P. Laua, X. H. Zhangb, H. H. Hngc, H. W. Leea, S. F. Yua, B. K. Taya, J. Cryst. Growth, 259, 335–342 (2003).
[20] Y. R. Ryu, S. Zhu,1,D. C. Look, J. M. Wrobel, H. M. Jeong, H.W. White, J. Cryst. Growth, 216, 330-334 (2000).
[21] J. Löffler, R. Groenen, J. L. Linden, M.C.M. van de Sanden, R.E.I. Schropp, Thin Soild Film, 392, 315−319 ( 2001).
[22] G. G. Valle, P. Hammer, S. H. Pulcinelli, and C. V. Santilli, Journal of the European Ceramic Society, 24, 1009-1013 (2004).
[23] Q. B. Ma, Z. Z. Ye, H. P. He, J. R. Wang, L. P. Zhu, B. H. Zhao, J. Materials Characterization, 59(2), 124−128 (2008).
[24] T. Minami, H. Sato, H. Nanto, and S. Takata, Jpn. J. Appl. Phys. 25, L776. (1986).
[25] G. J. Exarhos, S. K. Sharma, Thin Solid Films, 270, 27-32 (1995).
[26] J. Hu, R. G. Gordon, J. Appl. Phys. 72, 5381 (1992) .
[27] Z. Q. Xu, H. Deng, Y. Li, H. Cheng, Materials Science in Semiconductor Processing, 9(1-3), 132-135(2006).
[28] K. Tominaga, M. Kataoka, Thin Solid Films, 290/291, 84 (1996).
[29] S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, P. Fons, K. Iwata, S. Nakamura, Y. Kimura, T. Baba, H. Nakanishi, T. Kojima, S. Niki, Sol. Energy Mater. Sol. Cells 87, 541 (2005).
[30] F. Couzinié-Devy, N. Barreau, J. Kessler, Thin Solid Films 516, 7094 (2008).
[31] J. E. Jaffe, A. C. Hess, Phys. Rev. B 48, 7903-7909 (1993) .
[32] C. H. Bates, W. B. White, and R. Roy, Science 137, 993(1962).
[33] J. C. jamieson, Phys. Earth Planet. Inter. 3,201(1970).
[34] L. Gerward, and J. S. Olsen, J. Synchrotron Rad. 2, 233 (1995).
[35] S. Desgreniers, Phys. Rev. B 58,14102 (1998).
[36] J. Z. Jiang, J. S. Olsen, L. Gerward, D. Frost, D. Rubie, J. Peyronneau, Europhys. Lett. 50, 48 (2000).
[37] H. Karzel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, and G. M. Kalvius, Phys. Rev. B 53, 11425–11438 (1996).
[38] H. Z. Liu, Y. Ding, M. Somayazulu, J. Qian, J. Shu, D. Hausermann, H. K. Mao, Phys. Rev. B 71,4(2005).
[39] L. Wang, H. Liu, J. Qian, W. Yang, and Y. Zhao, J. Phys. Chem. C 116(3), 2074–2079 (2012).
[40] D. B. Hou, Y. Z. Ma, C. X. Gao, J. Chaudhuri, R. G. Lee, H. B. Yang, J. Appl. Phys. 105, 4 (2009).
[41] R. S. Kumar, A. L. Cornelius, M. F. Nicol, Curr. Appl. Phys. 7, 135 (2007).
[42] Z. Dong, K. K. Zhuravlev, S. A. Morin, L. Li, S. Jin, and Y. Song, J. Phys. Chem. C 116 (2012).
[43] A. M. Saitta, F. Decremps, Phys. Rev. B 70, 035214(2004).
[44] E. Kisi, and M. M. Elcombe, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. C45, 1867 (1989).
[45] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
[46] S. Limpijumnong, S. Jungthawan, Phys. Rev. B 70, 054104 (2004).
[47] 林志明,超高壓技術簡介—應用於半導體相變研究,物理雙月刊20 卷5 期,中華民國87 年10 月
[48] H. K. Mao, J. Xu, and P. M. Bell, J. Geophysical Reserch, 91, 85, 4673-4676 (1986).
[49] F. Birch, "Finite Elastic Strain of Cubic Crystals". Physical Review 71 (11), 809–824 (1947).
[50] Y. Shen, R. S. Kumar, M. Pravica, and M. F. Nicol, Rev. Sci. Instrum., 75, 11 (2004).
[51] A. Le Bail, H. Duroy, and J .L. Fourquet, Mater. Res. Bull., 23, 447(1988).
[52] H. M. Rietveld, J. Appl. Crystallogr.,2,65-71 (1969).
[53] A. C. Larson, and R. B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (2004).
[54] J. M. Recio, M. A. Blanco, and V. Luaña, Phys. Rev. B 58, 8949–8954 (1998).
[55] S. H. Tolbert, and A. P. Alivisatos, J. Phys. Chem. 102, 11 (1995).
[56] 《科學發展》2004年1月,373期,44~49頁
[57] J. E. Huheey, E. A. Keiter, R. L. Keiter, Inorganic Chemistry, Fourth Edition( 2007).