簡易檢索 / 詳目顯示

研究生: 邱依德
Chiu, Yi-Te
論文名稱: 氧化鋅摻雜鋁高壓下相變之研究
The Phase Transitions of Aluminum Doped Zinc Oxide Under High Pressure
指導教授: 林志明
口試委員:
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 數理教育研究所
Graduate Institute of Mathematics and Science Education
論文出版年: 2012
畢業學年度: 100
語文別: 中文
中文關鍵詞: 氧化鋅氧化鋅摻雜鋁高壓相變相變機制X光繞射
外文關鍵詞: ZnO, ZnO doped Al, high pressure, phase transition, phase transition model, x-ray diffraction
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗在國家同步輻射研究中心(National Synchrotron Radiation Research Center:NSRRC)-BL01C1實驗站,利用X-ray 繞射角度擴散分析(angle-dispersive x-ray diffraction, ADXRD)對以化學沉澱法製備之奈米氧化鋅摻雜3%鋁(Aluminum doped ZnO, Zn0.97Al0.03O)進行高壓實驗,研究Zn0.97Al0.03O在常溫高壓下相變的情形。
    實驗中,將Zn0.97Al0.03O由常壓加壓至19.20 GPa,研究結果顯示,Zn0.97Al0.03O由纖鋅礦結構(würtzite structure, B4) 轉變成氯化鈉相結構(rocksalt structure, B1)的相變起始壓力為9.02 GPa,相變完成的壓力為16.54 GPa,比前人所研究之奈米氧化鋅相變起始壓力9.3~13.7 GPa更為提早,顯示鋁的摻雜影響氧化鋅晶體結構的穩定性。
    本研究觀察出,在加壓過程中,纖鋅礦結構的c軸比a軸更容易被壓縮,在相變發生前,c/a 值逐漸下降,平行c軸的鋅氧之間的鍵長幾乎沒有改變,而相變開始後c/a 值逐漸上升,鋅氧之間的鍵長也增加,直到相變完成,與前人所提出氧化鋅相變模型的「hexagonal」路徑相符合。


    This experiment is to study phase transition of Zn0.97Al0.03O(3% Aluminum doped ZnO, Zn0.97Al0.03O)under the room temperature and high pressure. The Zn0.97Al0.03O is prepared by chemical precipitation method then analyzed through high pressure experiment by angle-dispersive x-ray diffraction(ADXRD) in LAB-BL01C1 of National Synchrotron Radiation Research Center (NSRRC).
    Zn0.97Al0.03O was pressurized from ambient to 19.20 GPa in this experiment. The phase transition from the würtzite-type (B4) to the rocksalt-type (B1) phase started at 9.02 GPa and completed at 16.54 GPa. The initial transition pressure of Zn0.97Al0.03O is earlier than the formal conclusion 9.3~13.7 GPa. It indicates that Al doped influence the stability of Zn0.97Al0.03O structure.
    From the result of the research, c axis is compressed more easily than a axis. Before the phase transition, c/a ratio decreases gradually but the bond length between Zn and O parallel to the c axis changes slightly. As soon as the phase transition starts, the c/a ratio and the bond length between Zn and O increase till the completion of the phase transition. The Zn0.97Al0.03O phase transition model through hexagonal path meets the result of formal research.

    謝 誌 I 中文摘要 II Abstract III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 氧化鋅的性質與應用 1 1.2 奈米氧化鋅的性質與應用 3 1.3 氧化鋅薄膜的性質與應用 5 1.4 氧化鋅摻雜鋁的性質與應用 7 1.5 文獻探討 7 1.5.1 氧化鋅結構相變起始壓力 7 1.5.2 氧化鋅結構相變機制 11 1.6 研究動機 14 第二章 實驗方法 15 2.1 實驗樣品之取得 15 2.2 實驗設備 17 2.2.1 鑽石高壓砧(Diamond Anvil Cell,DAC)技術 17 2.2.1.1 鑽石高壓砧結構與原理 17 2.2.1.2 樣品腔的獲得 20 2.2.1.3 紅寶石螢光壓力計 20 2.2.1.4 傳壓介質(pressure transmitting medium) 21 2.2.1.5 樣品信號量測及加壓 21 2.2.2 X光繞射設備 22 2.2.2.1 同步輻射X-ray 22 2.2.2.2 角度擴散分析(Angular-dispersive analysis) 24 2.3 高壓實驗之流程 25 2.4 實驗分析軟體 27 2.4.1 分析軟體─ fit2D 27 2.4.2 分析軟體─ GSAS 31 第三章 結果與討論 41 3.1 氧化鋅摻雜鋁之晶體結構分析 42 3.2 加壓後氧化鋅摻雜鋁粉體之繞射圖譜 44 3.3 加壓後晶格常數變化情形 51 3.4 相變壓力與前人研究比較 60 3.5 探討Zn0.97Al0.03O相變機制 66 第四章 結論 71 第五章 未來工作 73 參考資料 74

    [1] R. R. Reeber, J. Appl. Phys. 41, 5063 (1970).
    [2] 葉志鎮,氧化鋅半導體材料摻雜技術與應用,浙江大學出版社(2009)
    [3] 張凱,馬豔,範敬輝,譚雲, 低發射率紅外隱身塗料研究進展. 化學推進劑與高分子材料, 6(1): 21-25 (2008)
    [4] Y. Tanaka, T. Ifuku, K. Tsuchida and A. Kato, J. Mater. Sci. Lett. 16, 2, 155-157 (1997).
    [5] K. P. Ong, D. J. Singh, and P. Wu, Phys. Rev. B 83, 115110 (2011).
    [6] 余樹楨,晶體之結構與性質,渤海堂文化事業有限公司,中華民國89 年5 月
    [7] E.A. Skrabek, and J. W. McGrew,“Pioneer 10 and 11 RTG Performance Update”, on Space Nuclear Power Systems 1987, 7,Orbit Book Co., Malabar, Florida, p.587 (1988).
    [8] I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B, 56, R12685 (1997).
    [9] S. Hébert, S. Lambert, D. Pelloquin, and A. Maignan, Phys. Rev. B, 64, 172101 (2001).
    [10] G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. -P. Fleurial, T. Caillat, Inter. Mater. Rev. 48(1), 45-66 (2003).
    [11] 朱旭山,「熱電材料與元件之發展與應用」,工業材料雜誌,220 期,第93-103 頁(2005)。
    [12] T. Caillat, J. -P. Fleurial, “Zn-Sb alloys for thermoelectric power generation”, Energy Conversion Engineering Conference, IECEC 96., Proceedings of the 31st Intersociety, 2, 905-909 (1996).
    [13] F. K. Shan, Y. S. Yu, Journal of the European Ceramic Society, 24, 6, 1869−1872 (2004) .
    [14] http://pesec.t.kyoto-u.ac.jp/ematerial/research/zno/znofig/mist_zno_photo.jpg
    [15] http://www.lightworksfoundation.org/led-diagram.jpg
    [16] H. Sheng, N. W. Emanetoglu, S. Muthukumar, B. V. Yakshinskiy, S. Feng, and Y. Lu, J. Electronic Materials, 32, 9, 935-938 (2003).
    [17] Han-Ki Kim, Sang-Heon Han, and Tae-Yeon Seong, Appl. Phys. Lett. 77, 1647 (2000).
    [18] Han-Ki Kim, Kyoung-Kook Kim, Seong-Ju Park, Tae-Yeon Seong, and Ilesanmi Adesida, J. Appl. Phys. 94, 4225 (2003).
    [19] Y. G. Wanga, S. P. Laua, X. H. Zhangb, H. H. Hngc, H. W. Leea, S. F. Yua, B. K. Taya, J. Cryst. Growth, 259, 335–342 (2003).
    [20] Y. R. Ryu, S. Zhu,1,D. C. Look, J. M. Wrobel, H. M. Jeong, H.W. White, J. Cryst. Growth, 216, 330-334 (2000).
    [21] J. Löffler, R. Groenen, J. L. Linden, M.C.M. van de Sanden, R.E.I. Schropp, Thin Soild Film, 392, 315−319 ( 2001).
    [22] G. G. Valle, P. Hammer, S. H. Pulcinelli, and C. V. Santilli, Journal of the European Ceramic Society, 24, 1009-1013 (2004).
    [23] Q. B. Ma, Z. Z. Ye, H. P. He, J. R. Wang, L. P. Zhu, B. H. Zhao, J. Materials Characterization, 59(2), 124−128 (2008).
    [24] T. Minami, H. Sato, H. Nanto, and S. Takata, Jpn. J. Appl. Phys. 25, L776. (1986).
    [25] G. J. Exarhos, S. K. Sharma, Thin Solid Films, 270, 27-32 (1995).
    [26] J. Hu, R. G. Gordon, J. Appl. Phys. 72, 5381 (1992) .
    [27] Z. Q. Xu, H. Deng, Y. Li, H. Cheng, Materials Science in Semiconductor Processing, 9(1-3), 132-135(2006).
    [28] K. Tominaga, M. Kataoka, Thin Solid Films, 290/291, 84 (1996).
    [29] S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, P. Fons, K. Iwata, S. Nakamura, Y. Kimura, T. Baba, H. Nakanishi, T. Kojima, S. Niki, Sol. Energy Mater. Sol. Cells 87, 541 (2005).
    [30] F. Couzinié-Devy, N. Barreau, J. Kessler, Thin Solid Films 516, 7094 (2008).
    [31] J. E. Jaffe, A. C. Hess, Phys. Rev. B 48, 7903-7909 (1993) .
    [32] C. H. Bates, W. B. White, and R. Roy, Science 137, 993(1962).
    [33] J. C. jamieson, Phys. Earth Planet. Inter. 3,201(1970).
    [34] L. Gerward, and J. S. Olsen, J. Synchrotron Rad. 2, 233 (1995).
    [35] S. Desgreniers, Phys. Rev. B 58,14102 (1998).
    [36] J. Z. Jiang, J. S. Olsen, L. Gerward, D. Frost, D. Rubie, J. Peyronneau, Europhys. Lett. 50, 48 (2000).
    [37] H. Karzel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, and G. M. Kalvius, Phys. Rev. B 53, 11425–11438 (1996).
    [38] H. Z. Liu, Y. Ding, M. Somayazulu, J. Qian, J. Shu, D. Hausermann, H. K. Mao, Phys. Rev. B 71,4(2005).
    [39] L. Wang, H. Liu, J. Qian, W. Yang, and Y. Zhao, J. Phys. Chem. C 116(3), 2074–2079 (2012).
    [40] D. B. Hou, Y. Z. Ma, C. X. Gao, J. Chaudhuri, R. G. Lee, H. B. Yang, J. Appl. Phys. 105, 4 (2009).
    [41] R. S. Kumar, A. L. Cornelius, M. F. Nicol, Curr. Appl. Phys. 7, 135 (2007).
    [42] Z. Dong, K. K. Zhuravlev, S. A. Morin, L. Li, S. Jin, and Y. Song, J. Phys. Chem. C 116 (2012).
    [43] A. M. Saitta, F. Decremps, Phys. Rev. B 70, 035214(2004).
    [44] E. Kisi, and M. M. Elcombe, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. C45, 1867 (1989).
    [45] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
    [46] S. Limpijumnong, S. Jungthawan, Phys. Rev. B 70, 054104 (2004).
    [47] 林志明,超高壓技術簡介—應用於半導體相變研究,物理雙月刊20 卷5 期,中華民國87 年10 月
    [48] H. K. Mao, J. Xu, and P. M. Bell, J. Geophysical Reserch, 91, 85, 4673-4676 (1986).
    [49] F. Birch, "Finite Elastic Strain of Cubic Crystals". Physical Review 71 (11), 809–824 (1947).
    [50] Y. Shen, R. S. Kumar, M. Pravica, and M. F. Nicol, Rev. Sci. Instrum., 75, 11 (2004).
    [51] A. Le Bail, H. Duroy, and J .L. Fourquet, Mater. Res. Bull., 23, 447(1988).
    [52] H. M. Rietveld, J. Appl. Crystallogr.,2,65-71 (1969).
    [53] A. C. Larson, and R. B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (2004).
    [54] J. M. Recio, M. A. Blanco, and V. Luaña, Phys. Rev. B 58, 8949–8954 (1998).
    [55] S. H. Tolbert, and A. P. Alivisatos, J. Phys. Chem. 102, 11 (1995).
    [56] 《科學發展》2004年1月,373期,44~49頁
    [57] J. E. Huheey, E. A. Keiter, R. L. Keiter, Inorganic Chemistry, Fourth Edition( 2007).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE