簡易檢索 / 詳目顯示

研究生: 蔡見昌
Chien-Chang Tsai
論文名稱: 正交分頻多工系統於PC-Based FPGA平台之軟硬體共同設計與實現
Hardware/Software Co-design and Implementation of OFDM System on PC-Based FPGA Platform
指導教授: 馬席彬
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 產業研發碩士積體電路設計專班
Industrial Technology R&D Master Program on IC Design
論文出版年: 2007
畢業學年度: 96
語文別: 中文
論文頁數: 88
中文關鍵詞: 正交分頻多工多載波系統軟硬體共模擬無線都會網路
外文關鍵詞: OFDM, IEEE 802.16-2004, multicarrier, WLAN
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於無線通訊的蓬勃發展, 相關的無線通訊標準更是一一的被制定提出。正因為無線通訊具有移動性與覆蓋範圍廣的優點, 目前市面上已有相當多的無線通訊的相關產品, 所以對於開發一套無線通訊標準在時間上是很重要的。於是我們針對以目前無線通訊的主流技術OFDM
    為基礎, 開發一套可供使用者容易開發與驗證分析演算法的平台。

    在本篇論文中提出一個適用於多種正交分頻多工系統架構之通訊系統的設計技術與方法的驗證平台。在平台的開發上, 硬體是使用以個人電腦之PCI 匯流排為傳輸介面的FPGA板。至於系統開發方面, 我們將傳送機以HDL 實現於FPGA 上, 在接上用SystemC 開發的接收機做共模擬, 再利用介面使MATLAB 做資料及時分析。

    在硬體實現上是根據802.16-2004 通訊標準將傳送機部份實現在FPGA 板上, 並且用軟體SystemC語言來開發接收機的演算法, 如此便可以擁有硬體的高運算速度與軟體的設計彈性優點, 達成系統的共模擬。而平台模擬的環境是利用Visual C++ 來編譯執行SystemC 。而且在接收機的軟體設計部分包括訊框偵測、訊框邊界偵測、通道估測、通道等化, 相位估算與追蹤補償等等模組, 可以利用設計的SystemC 模組介面, 將利用MATLAB 將相關的訊號做即時的資料出, 如此開發者便可以觀察到每個訊號隨時間的動態變化關係, 而加深
    其對演算法之間所呈現的物理現象。

    至於在HDL 、SystemC 與MATLAB 三者之間的溝通, 我們提供了兩個介面給使用者使用, 在每個介面中所做的基本動作, 為資料的存取與資料格式的轉換, 除此之外還包含一些機制, 才能使兩兩之間相互溝通。


    1 緒論 1 1.1 研究背景 . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機 . . . . . . . . . . . . . . . . . . . . . . 2 1.3 無線網路的種類與相關標準技術簡介 . . . . . . . . . . 3 1.3.1 802.11標準技術簡介 . . . . . . . . . . . . . . . . 4 1.3.2 802.15標準技術簡介 . . . . . . . . . . . . . . . . 5 1.3.3 802.16標準技術簡介 . . . . . . . . . . . . . . . . 5 1.4 論文組織介紹 . . . . . . . . . . . . . . . . . . . . 6 2 802.16標準實體層規格與傳送機架構 11 2.1 正交分頻多工(OFDM) 系統簡介 . . . . . . . . . . . . 11 2.1.1 正交分頻多工之數學模型. . . . . . . . . . . . . . 11 2.1.2 保護區間(Guard Interval) 與循環前置(Cyclic Prefix) . . . . . . . 14 2.1.3 正交分頻多工之優缺點. . . . . . . . . . . . . . . 16 2.2 802.16-2004 系統規格參數. . . . . . . . . . . . . . 18 2.2.1 訊框結構. . . . . . . . . . . . . . . . . . . . . 18 2.2.2 符元結構. . . . . . . . . . . . . . . . . . . . . 20 2.2.3 參數介紹. . . . . . . . . . . . . . . . . . . . . 21 2.3 基頻傳送端系統架構. . . . . . . . . . . . . . . . . 22 2.3.1 傳送端系統架構. . . . . . . . . . . . . . . . . . 22 2.3.2 外傳送機(Outer Transmitter) . . . . . . . . . . . 22 攪亂器(Scrambler) . . . . . . . . . . . . . . . . 25 前端錯誤更正(Forward error correction). . . . . . 26 交錯器(Interleaver) . . . . . . . . . . . . . . . 29 2.3.3 內傳送機(Inner Transmitter) . . . . . . . . . . . 29 資料調變(Data modulation) . . . . . . . . . . . . 29 領航碼調變(Pilot modulation). . . . . . . . . . . 30 前置碼調變(Preamble modulation) . . . . . . . . . 31 3 接收端系統架構之設計 35 3.1 接收端架構. . . . . . . . . . . . . . . . . . . . . 35 3.2 訊框偵測器(Frame Detector) . . . . . . . . . . . . 37 3.3 邊界偵測器(Boundary Detector) . . . . . . . . . . . 40 3.4 CP 長度偵測器(CP Length Detector) . . . . . . . . . 42 3.5 載波頻率漂移估測器(CFO Estimator) . . . . . . . . . 42 3.6 載波頻率漂移補償器(CFO Compensator) . . . . . . . . 44 3.7 視窗平移器(Window Shifter). . . . . . . . . . . . . 45 3.8 快速傅利業轉換(Fast Fourier Transformer). . . . . . 45 3.9 通道估測器(Channel Estimator) . . . . . . . . . . . 49 3.10 通道追蹤器(Channel Tracker). . . . . . . . . . . . 50 3.11 等化器(Equalizer). . . . . . . . . . . . . . . . . 51 3.12 相位錯誤追蹤器(Phase Error Tracker). . . . . . . . 51 3.13 相位錯誤補償器(Phase Error Compensator). . . . . . 54 3.14 解調器(Demapper) . . . . . . . . . . . . . . . . . 54 4 系統效能模擬 57 4.1 基頻通道模型. . . . . . . . . . . . . . . . . . . . 57 4.1.1 加成性白高斯雜訊(Additive White Gaussian Noise) . . . . . . . . 58 4.1.2 載波頻率漂移(Carrier Frequency Offset). . . . . . 59 4.1.3 取樣頻率漂移(Sampling Frequency Offset) . . . . . 59 4.1.4 多重路徑衰減效應(Multipath Fading). . . . . . . . 59 4.1.5 SUI 通道模型. . . . . . . . . . . . . . . . . . . 61 4.2 通道效能模擬. . . . . . . . . . . . . . . . . . . . 63 4.2.1 AWGN 通道位元錯誤率模擬 . . . . . . . . . . . . . 63 4.2.2 SUI 通道位元錯誤率模擬. . . . . . . . . . . . . . 63 5 平台發展與驗證 67 5.1 平台簡介. . . . . . . . . . . . . . . . . . . . . . 67 5.2 軟體介面. . . . . . . . . . . . . . . . . . . . . . 69 5.3 硬體介面. . . . . . . . . . . . . . . . . . . . . . 72 5.4 平台即時(Real-time) 分析. . . . . . . . . . . . . . 75 6 未來展望與結論 83 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . 83 6.2 未來展望. . . . . . . . . . . . . . . . . . . . . . 84

    [1] IEEE std. 802.11, "IEEE Standard for Wireless LAN Medium Access Control
    (MAC) and Physical Layer (PHY) Specifications, " 1997.
    [2] IEEE std. 802.16-2004, "IEEE Standard for Local and Metropolitan Area Networks,
    Part 16: Air Interface for Fixed Broadband Wireless Access Systems." Oct.
    2004.
    [3] IEEE std. 802.11b, "IEEE Standard for Wireless LAN Medium Access Control
    (MAC) and Physical Layer (PHY) Specifications, " 1999.
    [4] IEEE std. 802.11a, "IEEE Standard for Wireless LAN Medium Access Control
    (MAC) and Physical Layer (PHY) Specifications, " 1999.
    [5] IEEE std. 802.11g, "IEEE Standard for Wireless LAN Medium Access Control
    (MAC) and Physical Layer (PHY) Specifications, " 2003.
    [6] IEEE Std 802.15.1-2005 IEEE Standard for Information technology - Telecommunications
    and information exchange between systems - Local and metropolitan
    area networks - Specific requirements Part 15.1: Wireless medium access control (MAC) and physical layer (PHY) specifications for wireless personal area
    networks (WPANs), 2005.
    [7] IEEE Std 802.15.3-2003 IEEE standard for information technology - telecommunications
    and information exchange between systems - local and metropolitan
    area networks - specific requirements part 15.3: wireless medium access control
    (MAC) and physical layer (PHY) specifications for high rate wireless personal
    area networks (WPANs), 2003.
    [8] IEEE Std 802.15.4-2003 IEEE standard for information technology - telecommunications
    and information exchange between systems - local and metropolitan
    area networks specific requirements part 15.4: wireless medium access control
    (MAC) and physical layer (PHY) specifications for low-rate wireless personal
    area networks (LR-WPANs), 2003.
    [9] IEEE std. 802.16e-2005, "IEEE Standard for Local and Metropolitan Area Networks,
    Part 16: Air Interface for Fixed and Modile Broadband Wireless Access
    Systems, Amendment for Physical and Medium Access Control Layers for Combined
    Fixed and Mobile Operation in Licensed Bands, " Dec. 2005.
    [10] T. M. Schmidl, D. C. Cox, “Low-Overhead, Low-Complexity [Burst] Synchronization
    for OFDM,” Proc. ICC, pp. 1301-1306, 1996.
    [11] T. M. Schmidl, D. C. Cox, “Robust frequency and timing synchronization for
    OFDM,” IEEE Trans. Commun., vol.45, no.12, pp.1613-1621, Dec. 1997.
    [12] F. M. Gardner, “Interpolation in digital modems-Part II: Implementation and Performance,”
    IEEE Trans. Commun., vol. 41, pp. 998-1008, June 1993.
    [13] William stallings, Wireless Communications and Networks, McGraw-Hill, 2002.
    [14] S. R. Saunders, Antennas and Propagation for Wireless Communication Systems,
    John Wiley & Sons, 1999.
    [15] J. Lee., H.L. Lou, D. Toumpakaris, and J.M. Cioffi, "Effect of Carrier Frequency
    Offset on OFDM Systems for Multipath Fading Channels," Global Telecommunications
    Conference, 2004.
    [16] Y. Li and G. L. Stüber, Orthogonal Frequency Division Multiplexing for Wireless
    Communications, Springer & Sons, 2006.
    [17] V. Erceg, K.V.S. Hari, M.S. Smith, D.S. Baum et al, “Channel Models for Fixed
    Wireless Applications,” IEEE 802.16.3 Task Group Contributions, June 2003.
    [18] IEEE std 1666-2005, "IEEE Standard SystemC Language Reference Manual",
    2006

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE