研究生: |
賴俊邑 Jyun-Yi Lai |
---|---|
論文名稱: |
奈米碳管快速表面官能基化暨其在複合材料上之應用 |
指導教授: |
黃國柱
Kuo-Chu Hwang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 125 |
中文關鍵詞: | 奈米碳管 、官能基化 、高分子 、複合材料 、環氧樹脂 |
外文關鍵詞: | carbon nanotube, functionalization, polymer, composite, epoxy resin |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前催化化學氣相沉積法製備多層奈米碳管具有成本低,產量大等優點,是目前最適合大量製備奈米碳管的方法◦ 本篇論文的第一部份是用流動催化法 (floating catalyst method) 製備多層奈米碳管, 在T=150oC時加熱催化劑和碳源,讓催化劑與碳源一起以氣體的形式進入反應爐內,並在T=900oC時被催化熱裂解生成碳管,此方法可以提高奈米碳管的產率和純度◦
在本篇論文的第二部份是快速官能基化奈米碳管的表面,利用微波引發自由基起始高分子聚合反應,可將高分子接枝在奈米碳管表面,接上奈米碳管表面的高分子包括油溶性的高分子 (polystyrene, polyglycidyl methacrylate, polyethylene glycol methacrylate phosphate, polyvinyl acetate, polyvinyl phenylboronic acid) 和水溶性的高分子 (poly-2-acrylamido-2-methylpropanesulfonic acid) ,並利用FTIR, TGA, TEM, EELS和Raman spectra鑑定碳管表面接上的高分子,碳管表面接上不同的高分子時其於水相或有機相中之溶解度大約在1000~2500mg/L之間◦
在本篇論文的第三部份中,是探討奈米碳管與環氧樹脂間產生化學鍵結對其機械性質的影響, 在T = 100 oC時,以及2%的碳管 (CNT-PAA-DETA) 填充下,儲存模數的增強幅度約2%的碳管 (CNT-COOH-DETA) 填充下的增強幅度的2倍左右,所以可以藉由增加碳管表面的胺根來增加碳管在環氧樹脂中的分散性,此外在2%的碳管 (CNT-PAA-DETA) 填充下,在儲存模數上高溫的加強幅度約為室溫的加強幅度的2.4倍,因此碳管與基材間可藉由共價鍵的生成有效提升負載轉移效率,尤其在高溫時◦
Catalytic chemical vapor deposition is one of the most promising synthetic route for production of large quantities of carbon nanotubes economically. The first part of this thesis is to produce carbon nanotubes by floating catalyst method. The precursor is vaporized at 150 oC, and then catalystically decomposed at 900 oC to produce carbon nanotubes. This method can produce carbon nanotubes of higher purity and yields than other traditional methods.
The second part of this thesis is to rapidly surface-functionalized multi-walled carbon nanotubes in an one pot process by using microwave induced radical polymerization reaction. Both hydrophobic (e.g., polystyrene, polyglycidyl methacrylate, polyethylene glycol methacrylate phosphate, polyvinyl acetate, poly-4-vinyl phenylboronic acid, etc), and hydrophilic (e.g., poly-2-acryl amido-2-methylpropanesulfonic acid, etc), polymer chains can be chemically grafted onto the surface of MWNT by the same process within 10 min. The surface grafted polymers were identified by various spectroscopic methods, such as, FTIR, NMR, TGA, TEM, Raman spectra and EELS spectra. The solubilities of the surface derivatized MWNTs are in the range of 900~2400 mg/L in solution.
The third part of this thesis is to investigate the influence of surface functionlization of carbon nanotubes on the interfacial interactions between the polymer matrix and carbon nanotubes. The enhanced storage modulus of epoxy resin filled with 2% CNT-PAA-DETA is two times that of epoxy resin filled with 2%CNT-COOH -DETA. The enhanced storage modulus of epoxy resin with 2%CNT-PAA-DETA at 100 oC is 2.4 times higher than that observed at 30oC. The enhanced load transfer efficiency at high temperature is attributed to formation of convalent bonds between CNTs and the epoxy resin matrix.
參考文獻
1. S. Iijima, Nature 1991, 354, 56.
2. http://www.cysh.cy.edu.tw/subject/chem/C60的發現與其 邊、面數目之計算.htm
3. T. Ichihashi, S. Iijima, Nature 1993, 363, 603.
4. Y. Y. Fan, F. Li. H. M. Cheng, J Mater Res. 1998, 13, 2342.
5. D. S. Bethune, C. H. Kiang, M. S. Vries, G. Gorman, R. Savoy, J. Vasquez, R. Beyers, Nature 1993, 363, 605.
6. Th. Henning, F. alama, Science 1998, 282, 2204.
7. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley,
Chem.Phys.Lett.1995, 243, 49.
8. MS. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes & Carbon Nanotubes. San Diego: Academic Press,1996.
9. W. E. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature 1998, 391, 59.
10. S, Iilima, Mater Sci & Eng B. 1993, 19, 172.
11. S. Iilima, Nature 1991, 354, 56.
12. T. W. Ebbesen,Carbon nanotube preparation and properties, CRC Press,Tokyo,1997,p114.
13. S. Iijima, T. Ichihashi, Y. Ando, Nature 1992, 356, 776.
14. T. W. Ebbesen, P. M. Ajayan, Nature 1992, 358, 220.
15. T. W. Ebbesen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui,
K. Tanigaki, Chem.Phys.Lett. 1993, 209, 83.
16. T. W. Ebbesen, Annual Review of Material Science, 1994, 24, 235.
17. T. W. Ebbesen, P. M. Ajayan, Nature 1992, 358, 220.
18. K. Ausman, R. Piner, O. Lourie, R. S. Ruoff, M. Korobov,
J.Phys. Chem.B 2000, 104, 8911.
19. Y. Saito, T. Yoshikawa, M. Inagaki,
Chem.Phys.Lett.1993, 204, 277.
20. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem.Phys.Lett.1995, 243, 49.
21. T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek,
D. T. Colbert, R. E. Smalley, J.Phys.Chem.1995, 99, 694.
22. A. Rodney, J. David, Q. Dali, R. Terry, Acc.Chem.Res. 2002, 35, 1008.
23. J. Li, C. Papadopoulos, J. M. Xu, M. Moskovits,
Appl.Phys.Lett.1999, 75, 367.
24. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler,
A. M. Cassell, H. Dai, Science 1999 , 283, 512.
25. K. Mukhopadhyay, A. Koshio, T. Sugai, N. Tanaka,
H. Shinohara, Z. Konya, J. B. Nagy, Chem Phys Lett. 1999, 303, 117.
26. H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun,
M. S. Dresselhaus, Appl.Phys.Lett. 1998, 72, 3282.
27. C.Singh, S. P. S. Milo, H. W. Alan,
Carbon 2003, 41, 359.
28. P. J. Boul, J. Liu, E. T. Mickelson, C. B. Huffman,
L. M. Ericson, I. W. Chiang, K. A. Smith, D. T. Colbert, R. H. Hauge, J. L. Margrave, R. E. Smalley,
Chem.Phys.Lett. 1999, 310, 367.
29. S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R. E. Smalley, P. C. Eklund, J.Phys.Chem.B. 1997, 101, 8839.
30. G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, S. Roth, Chem.Commun. 1998, 435.
31. R. J. Chen, Y. Zhang, D. Wang, H. Dai, J.Am.Chem.Soc. 2001, 123, 3838.
32. A. Star, J. F. Stoddart, D. Steuerman, M. Diehl, A. Boukai,
E. W. Wong, X. Yang, S. W. Chung, H. Choi, J. R. Heath,
Angew.Chem.Int.Ed. 2001, 40, 1721.
33. M. J. O’Connell, P. Boul, L. M. Ericson, C. Huffman,
Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman,
R. E. Smalley, Chem.Phys.Lett. 2001, 342, 265.
34. J. Liu, A. G. Rinzler, H. Dia, J. H. Hafner,
F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. ColBert. R. E. Smalley,Science 1998, 280, 1253.
35. K. C. Hwang J. Chem. Soc. Chem. Comm. 1995, 173.
36. H. Hiura, T. W. Ebbesen, K. Tanigaki, Adv.Mater.1995,7,275.
37. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund,
R. C. Haddon, Science 1998, 282, 95.
38. Y. P. Sun, W. Huang, Y. Lin, K. Fu, A. Kitaygorodskiy,
L. A. Riddle, Y, J. Yu, D.L.Carrol, Chem.Mater.2001,13,2864-2869.
39. Y. P. Sun, W. Huang, Y. Lin, K. Fu, H. Weijie, Acc.Chem.Res. 2002, 35, 1095.
40. M. Holzinger, O. Vostrovsky, A. Hirsch, F. Hennrich,
M. Kappes, R. Weiss, F. Jellen, Angew.Chem.Int.Ed. 2001, 40, 4002.
41. F. Langa, Chem.Commun. 2004, 1734.
42.(a)J. L. Bahr, J. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley, J. M. Tour, J.Am.Chem.Soc.2001, 123, 6536.
(b)J. L.Bahr, J. M.Tour, Chem.Mater,2001, 13, 3823.
43. V. Georgakilas, K. Kordatos, M. Prato, D. M. Guldi,
M. Holzinger, A. Hirsch, J.Am.Chem.Soc. 2002, 124, 760.
44. J. F. Despres, E. Daguerre, K. Lafdi, Carbon 1995, 33, 87.
45. P. Poncharal, Z. L. Wang, D. Ugarte, W. A. de Heer, Science 1999, 283, 1513.
46. R. S. Ruoff, J. Tersoff, D. C. Lorents, S. Subramoney,
B. Chaan, Nature 1993, 364, 514.
47. M. M. Treacy, T. W. Ebbesen, J. M. Giboson,
Nature 1996, 381, 678.
48. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Science 2000, 287, 637.
49. J. P. Salvatat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit, L. Zuppiroli, Appl.Phys.A
1999, 69, 255.
50. B. J. Yakobson, C. J. Brabec, J. Bernholc, J.Phys.Rev.Lett. 1996, 76, 2511.
51. R. S. Ruff, D. C. Lorents, Carbon 1995, 33, 925.
52. J. Cumings, A. Zettl, Science 2000, 289, 602.
53. M. R .Falvo, C. J. Clary, R. M. Taylor, V. Chi, F. P. Brooks, S. Washburn, R. Superfine, Nature 1997, 389, 582.
54. R. Z. Ma, J. Wu, B. Q. Wei, J. Liang, D. H. Wu, J.Mater.Res.1998, 33, 5243.
55. A. Peigney, Ch. Laurent, O. Dumortier, A. Rousset, J.Eur.Ceram.Soc.1998, 18, 1995.
56. Ch. Laurent, A. Peigney,O. Dumortier, A. Rousset, J.Eur.Ceram.Soc.1998, 18, 2005.
57. A. Peigney, Ch. Laurent, E. Flahaut, A. Rousset, Ceram.Int. 2000, 26, 677.
58. E. Flahaut, A. Peigney, Ch. Laurent, Ch. Marliere,
F. Chastel, A. Rousset, Acta Mater. 2000, 48, 3803.
59. L. C. Xu, B. Q. Wei, R. Z. Ma, J. Liang, X. K. Ma,
D. H. Wu, Carbon 1999, 37, 855.
60. T. KuZuMaki, K. Miyazawa, H. Ichinose, K. Ito,
J.Mater.Res. 1998, 13, 2445.
61. C. Bower, R. Rosen, L. Jin, J. Han, O. Zhou, Appl.Phys.Letts.1999, 74, 3317.
62. L. S. SHADLER, S. C. Giannaris, P. M. Ajayan, Appl.Phys,Lett. 1998, 73, 3842.
63. P. M. Ajayan, O.Stephan, C. Colliex, D. Trauth,
Science 1994, 265, 1212.
64. K. Yashino, H. Kajii, H. Araki, T. Sonoda, H. Take, S. Lee, Full.Sci.Technol.1999, 7, 695.
65. I. Musa, M. Baxendale, G. A. Amaratunga, W. Eccleston, Synth.Met.1999. 102. 1250.
66. J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer,
K. Schulte, A. H. Windle, Polymer 1999, 40, 5967.
67. O. Lourie, H. D. Wagner, N. Levin, Polymer 1997, 38, 5699.
68. H. D. Wagner ,O. Lourie, Y. Feldman, R. Tenne, Appl.Phys.Lett. 1998, 72, 188.
69. O. Lourie, H. D. Wagner, Composites
Sci.Techonal.1999, 59,975.
70. R. Andrews, D. Jacqes, A. M. Rao, T. Rantell, F. Derbyshire, Y. Chen, J. Chen, R. C. Haddon, Appl.Phys.Lett.
1999, 75, 1392.
71. Z. Jia, Z. Wang, C. Xu, J. Liang, B. Wei, D. Wu, S. Zhu, Mater.Sci.Eng. 1999, A271, 395.
72. D. Qian, E. C. Dickey, R. Andrews ,T. Rantell, Appl.Phys.Lett. 2000, 76, 2868.
73. M. Cadek, J. N. Coleman, K. P. Ryan, V. Nicolosi, G. Bister, A. Fonseca, J. B.Nagy, K. Szostak, F. Beguin, W. J. Blau, Nano.Lett. 2004, 4353.
74. D. E. Hill, Y. Lin, A. M.Rao, L. F. Allard, Y. P. Sun, Macromolecules 2002, 35, 9466.
75. W. Huang, Y. Lin, S. Taylor, J. Gaillard, A. M.Rao, Y. P. Sun, Nano Lett. 2002, 2, 231.
76. R. Blake, Y. K. Gun’ko, J. Coleman, M. Cadek, A. Fonseca, J. B. Nagy, W. J.Blau, J.Am.Chem.Soc. 2004, 126, 10226.
77. G. Viswanathan, N. Chakrapani, H. Yang, B. Wei, H. Chung, K. Cho, C. Y. Ryu, P. M.Ajayan, J.Am.Chem.Soc. 2003, 125, 9258.
78. H. Kong, C. Gao, D. Yan, J.Am.Chem.Soc.2004, 126, 412.
79. H. Kong, C. Gao, D. Yan, J.Mater.Chem.2004, 14, 1401.
80. G. L. Hwang, K. C. Hwang, Nano Lett.2001, 1, 435.
81. H. D. Wagner, O. Lourie, Y. Feldman, R. Tenne, Appl.Phys.Lett. 1998, 72, 188.
82. A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon,
A. Thess, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus, Science 1997, 275, 187.
83. H. D. Wagner, O. Lourie, Y. Feldman, R. Tenne, Appl.Phys.Lett. 1998, 72, 188.
84. C. A. Cooper, S. R. Cohen, A. H. Barber, H. D. Wagner, Appl.Phys.Lett.2002, 81, 3873.
85. A. H. Barber, S. R. Cohen, H. D. Wagner,
Appl.Phys.Lett.2003, 82,4140.
86. F. H. Gojny, J. Nastalczyk, Z. Roslaniec, K. Schulte, Chem.Phys.Lett.2003, 370, 820.
87. S. J. V. Frankland, A. Caglar, D. W. Brenner, M. Griebel, J.Phys. Chem.B 2002, 106, 3046.
88. M. Endo, Chemtech,1998, 18, 568.
89. L. J. Ci, J. Q. Wei, B. Q. Wei, J. Liang, C. L. Xu,
D. H. Wu, Carbon 2001, 39, 329.
90. 李元堯,奈米學程教材,國立中正大學,民國九十二年.
91. A. Peigney, Ch. Laurent, E. Flahaut, Carbon 2000, 39, 507.
92. 成會明 ,奈米碳管,五南,2004,P37-P42.
93. L. Chico, L. X. Benedict, S. G. Louie,
Phys.Rev B.1996, 54, 2600.
94. S. Frank ,P. POncharal, Z. L. Wang, Science 1998, 280, 1744.
95. R. F. Service, Science 1998, 281, 940.
96. A. Bachtold, C. Strunk, J. P. Salvetat, Nature 1999, 397,673.
97. S. J. Tans, A. M. R. Verschueren, C. Dekker,
Nature 1998, 393, 49.
98. P. G. Collins, K. Bradley, M. Lshigami,
Science 2000, 287, 1801.
99. J. Kong, N. R. Franklin, C. Zhou, Science 2000, 287, 622.
100. G. Overney, W. Zhong, D. Z. Tomanek, Phys D.1993, 27, 93.
101. B. I. Yakabson, C. J. Brarec, J. Bernholc,
Phys.Rev.Lett. 1996, 76, 2511.
102. M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson,
Nature 1997, 381, 678.
103. B. I. Yakabson, R. E. Smalley, Am Sci. 1997, 324.
104. A. J. Stone, D. J. Wales, Chem.Phys.Lett.1986, 128, 501.
105. B. I. Yakabson, Appl.Phys.Lett.1998, 72, 918.
106. Yase, K. et al. Thin solid films. 1996, 273, 22.
107. Varlot, K. Martin, J. M. Quet, C.; Kihn, Y. Ultramicroscopy, 1997, 68, 123.
108. K. P. Leung, K. W. Chiu, H. W. Lam, Analytica Chimica Acta 2003, 491, 15.
109. 成會明 ,奈米碳管,五南,2004,p43.
110. Y. L. Hsin, J. Y. Lai, K. C. Hwang, S. H. Lo, F. R. Chen, J.J.Kai, Carbon,2006 (in press).
111. X. Gong, J. Liu, S. baskaran, R. D. Voise, J. S. Young,Chem. Mater. 2000,12,1049.