簡易檢索 / 詳目顯示

研究生: 黃郁雯
Huang, Yu-Wen
論文名稱: 在行動網路中配合下行鏈路非正交多重存取技術之快速的資源配置
Fast Resource Allocation for Downlink Non-Orthogonal Multiple Access in Mobile Networks
指導教授: 高榮駿
Kao, Jung-Chun
口試委員: 楊舜仁
Yang, Shun-Ren
趙禧綠
Chao, Hsi-Lu
學位類別: 碩士
Master
系所名稱:
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 68
中文關鍵詞: 非正交多重存取技術資源配置
外文關鍵詞: Non-orthogonal multiple access, Resource allocation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著用戶及傳輸量需求的增長,提高頻譜效益的課題也越趨重要。而非正交多重存取技術 (NOMA) 因為能夠有效提高頻譜資源的使用率,因此被視為未來行動通訊網路中重要的技術之一。在本篇論文中,我們將基地台與使用者之間的互動看成是一種Stackelberg game,而主要目標為最大化滿足服務品質的使用者數量,次要目標則是最大化基地台的整體利潤。為了達成目的,我們提出了一個包含功率分配及資源區塊分配的演算法。對於每一組已知的NOMA配對,我們推導出一個公式能夠用來解決功率分配的問題。另外,我們將資源區塊分配問題轉換成在弦圖中找出最大權重及獨立集的問題,並且使用線性時間的演算法找到解答。而實驗結果顯示我們提出的演算法在滿足服務品質的使用者數量以及系統整體的傳輸速率都明顯優於其他我們拿來比較的演算法。


    Non-orthogonal multiple access (NOMA) has been considered as a promising radio access technique for the future mobile networks due to its superior spectrum efficiency. In this thesis, we consider a downlink NOMA system. We model the interaction between the base station and multiple users as a Stackelberg game and then propose a fast resource allocation algorithm, which consists of power allocation and resource allocation, to maximize the number of satisfied user equipment while seeking to enhance the revenue of the base station. Given a NOMA pair, we derive a closed-form solution for the optimal power allocation. And we convert the resource allocation problem into the problem of finding a maximum weight independent set in a chordal graph and thus can use a linear-time algorithm to find a maximum weight independent set. Simulation results show that proposed fast resource allocation algorithm outperforms the compared NOMA algorithms in terms of the number of satisfied user equipment and the system total throughput.

    Acknowledgement iii Abstract iv 中文摘要 v Table of contents vi List of figures ix Chapter 1 Introduction 1 1.1 Concept of NOMA 1 1.2 Superposition coding (SC) 3 1.3 Successive interference cancellation (SIC) 4 Chapter 2 Related work 5 Chapter 3 System model 9 3.1 Two-UEs NOMA scheme 9 3.2 Problem formulation 11 3.3 Successful Decoding Probability in NOMA 12 Chapter 4 Power allocation 15 4.1 Revenue-based Power Allocation method 16 Chapter 5 Resource block allocation 19 5.1 Partner Selection 20 5.2 Resource Block Allocation 27 5.3 Proof of Chordality 30 5.4 Complexity Analysis 39 Chapter 6 Simulation 41 6.1 Compared Algorithm 41 6.1.1 Maximum Weighted Maximum Cardinality Matching Algorithm 42 6.1.2 Iterative Full Search and Maximum Weighted Independent Set Algorithm 43 6.1.3 Iterative Maximum Weighted Independent Set Algorithm 43 6.1.4 Distanced-Based Algorithm 44 6.1.5 Channel State Sorting Pairing Algorithm 44 6.1.6 Population-based Meta-heuristic Algorithm 45 6.1.7 Hungarian-based Pairing Algorithm 47 6.1.8 Optimal OMA Resource Allocation Algorithm 47 6.2 Simulation settings 48 6.3 Simulation results 49 6.3.1 Different limit L in Iterative BS+MWIS Algorithm 50 6.3.2 Three Scenarios in Iterative BS+MWIS Algorithm 52 6.3.3 Performance Evaluation of Iterative BS+MWIS Algorithm 57 6.3.4 The Comparison between Iterative BS+MWIS algorithm and other algorithms 61 Chapter 7 Conclusion 66 Reference 67

    [1] Cisco Visual Networking Index: “Global Mobile Data Traffic Forecast Update, 2016-2021”, Feb. 2017.
    [2] K. Doppler, M. Rinne, C. Ribeiro, K. Hugl, “Device-to-device communications; functional prospects for LTE-advanced networks”, IEEE Commun. Mag., vol. 47, no. 12, pp. 42-49, Dec. 2009.
    [3] E.G. Larsson, O. Edfors, F. Tufvesson, T.L. Marzetta, “Massive MIMO for next generation wireless systems”, IEEE Commun. Mag., vol. 52, no. 2, pp. 186-195, Mar. 2014.
    [4] L. Di, B. Wang, Y. Yuan, S. Han, C. I, Z. Wang, “Non-orthogonal Multiple Access for 5G: Solutions Challenges Opportunities and Future Research Trends”, IEEE Commun. Mag., vol. 53, no. 9, pp. 74-81, Sep. 2015.
    [5] S.M.R. Islam, N. Avazov, O.A. Dobre, K.-S. Kwak, “Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges”, IEEE Commun. Surveys Tuts., vol. 18, no. 2, pp. 721-742, Oct. 2016.
    [6] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, K. Higuchi, “Non-orthogonal multiple access (NOMA) for Cellular future radio access”, IEEE VTC Spring, June 2013.
    [7] B. Di, S. Bayat, L. Song, Y. Li, "Radio resource allocation for downlink non-orthogonal multiple access (NOMA) networks using matching theory", IEEE GLOBECOM, pp. 1-6, Dec. 2015.
    [8] W. Cai, C. Chen, L. Bai, Y. Jin, J. Choi, “Subcarrier and power allocation scheme for downlink OFDM-NOMA systems”, IET Signal Processing, vol. 11, no. 1, pp. 51-58, 2017.
    [9] F. Fang, H. Zhang, J. Cheng, V. C. M. Leung, “Energy Efficiency of Resource Scheduling for Non-Orthogonal Multiple Access (NOMA) Wireless Network”, IEEE ICC, May. 2016.
    [10] F. Liu, P. Mahonen, M. Petrova, “Proportional Fairness-Based User Pairing and Power Allocation for Non-Orthogonal Multiple Access”, IEEE PIMRC, Dec. 2015.
    [11] M.-R. Hojeij et al., “Waterfilling-based proportional fairness scheduler for downlink non-orthogonal multiple access”, IEEE Wireless Commun. Lett., vol. 6, no. 2, pp. 230-233, Apr. 2017.
    [12] J. Choi, “Non-orthogonal multiple access in downlink coordinated two-point systems”, IEEE Commun. Lett., vol. 18, no. 2, pp. 313-316, Feb. 2014.
    [13] Y. Liu, G. Pan, H. Zhang, M. Song, “On the capacity comparison between MIMO-NOMA and MIMO-OMA”, IEEE Access, vol. 4, pp. 2123-2129, 2016.
    [14] Z. Zhang, Z. Ma, M. Xiao, Z. Ding, P. Fan, “Full-duplex device-to-device aided cooperative non-orthogonal multiple access”, IEEE Trans. Veh. Technol., vol. 66, no. 5, pp. 4467-4471, May 2016.
    [15] C. Li, Q. Zhang, Q. Li and J. Qin, “Price-Based Power Allocation for Non-Orthogonal Multiple Access System,” IEEE Wireless Commun. Lett., vol. 5, no. 6, pp. 664-667, Dec. 2016.
    [16] Z. Wang, C. Wen, Z. Fan and X. Wan, “A Novel Price-Based Power Allocation Algorithm in Non-Orthogonal Multiple Access Networks,” IEEE Wireless Commun. Lett., vol. 7, no. 2, pp. 230-233, April 2018.
    [17] Y.-C. Peng and J.-C. Kao, “Efficient Resource Allocation for Non-Orthogonal Multiple Access in Downlink Coordinated Multi-point Systems,” master thesis, National Tsing Hua University, Taiwan, July, 2015.
    [18] N. Otao, Y. Kishiyama, K. Higuchi, “Performance of non-orthogonal access with SIC in cellular downlink using proportional fair-based resource allocation,” IEEE ISWCS, pp.476-480, Aug. 2012.
    [19] A. Brandstadt, P. Ficur, A. Leitert, and M. Milanic, “Polynomial-time algorithm for weighted efficient domination problems in AT-free graphs and dually chordal graphs,” Inform. Process. Lett., pp. 256-262, Nov. 2014.
    [20] Z. Galil, “Efficient algorithms for finding maximum matching in graphs,” ACM CSUR, vol. 18, no. 1, pp. 23-38, Mar. 1986.
    [21] S.-M. Teng and J.-C. Kao, “Low-Complexity Resource Allocation to Support Maximum Users with Rate Demand for Downlink Non-Orthogonal Multiple Access in Next-Generation Mobile Networks,” master thesis, National Tsing Hua University, Taiwan, July, 2017.
    [22] H. Zhang, D.-K. Zhang, W.-X. Meng, C. Li, “User pairing algorithm with sic in non-orthogonal multiple access system,” IEEE ICC, May 2015.
    [23] M.-J. Yang and H.-Y. Hsieh, “Moving towards non-orthogonal multiple access in next-generation wireless access networks,” IEEE ICC, June 2016.
    [24] Z. Zhang, Q. Xia, G. Yu, and R. Liu, “Power control, user scheduling and resource Allocation for Downlink NOMA Systems with Imperfect Channel State Information,” IEEE WCSP, Oct. 2017.

    QR CODE