簡易檢索 / 詳目顯示

研究生: 施秉宏
Shih, Bing Hong
論文名稱: 軟絲與烏賊體色改變的週邊神經調控
Peripheral neural control of body patterning in oval squids and cuttlefish
指導教授: 焦傳金
Chiao, Chuan Chin
口試委員: 嚴宏洋
Yan, Hong Young
葉世榮
Yeh, Shin Rung
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 系統神經科學研究所
Institute of Systems Neuroscience
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 52
中文關鍵詞: 色素調控系統週邊神經系統體色改變
外文關鍵詞: chromatophore system, peripheral neural system, body patterning
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現代頭足類能夠以快速改變體色來進行溝通及偽裝。此改變體色的能力主要是藉由神經對皮膚內的色素細胞直接進行控制來達成。目前在中樞神經系統中對色素細胞進行調控的神經傳導路徑已經被廣泛研究,然而在週邊神經系統的體色表現調控方式卻仍屬未知。藉由給予萊氏擬烏賊表皮L-麩胺酸、乙醯膽鹼、血清素、AMPA及NMDA,並觀察色素細胞的擴張與收縮,本研究證實由於環狀肌肉上AMPA受器及NMDA受器表現量的不同,因此可以藉由突觸後作用機制來分別調控黃色及棕色色素細胞的擴張,此外乙醯膽鹼則參與在兩種不同色素細胞調控的突觸前調節機制。在另外一項研究中則以虎斑烏賊為對象觀察色素調控系統的週邊神經發育,藉由觀察皮膚對L-麩胺酸與血清素的反應,本研究顯示色素細胞在胚胎發育至第26期後才會具有功能。而比較不同發育期的胚胎在三種不同方格背景(小方格低對比、小方格高對比、大方格高對比)的體色反應後發現,胚胎雖然在第27期之後可以對環境反應出破碎型體色,然而其色素細胞調控系統卻仍未發展完全以至於不能針對環境差異做出適當反應。綜合以上發現,本研究顯示體色調控的週邊神經系統發育較早,且同時具有突觸前及突觸後兩種調控色素細胞的作用機制。


    Coleoid cephalopods are well known for their ability to rapidly change body patterns for communication and camouflage. This is primarily achieved by neural control of chromatophores in the skin. The neural connection of the chromatophore system in the central nervous system has been well studied. However, the specific mechanism of the peripheral neural control of chromatophores remains unknown. To determine the mechanism of the peripheral pathway, the several neurotransmitters such as L-Glutamate (L-Glu), serotonin, acetylcholine (ACh), AMPA, and NMDA were applied to the skin of oval squids (Sepioteuthis lessoniana) in vivo and the corresponding chromatophore expansion and retraction were recorded. The results showed that AMPA- and NMDA-like receptors expressed on radial muscles are involved in a postsynaptic mechanism to differentially control yellow and brown chromatophore expansions, and ACh is involved in a presynaptic mechanism of chromatophore control. In a separate study, cuttlefish embryos (Sepia pharaonis) were used to examine the peripheral development of the chromatophore system. The results showed that chromatophores are functional at embryonic stage 26 as evidence of its response to L-Glu and serotonin applications in vitro. In addition, three different checkboard backgrounds (small low-contrast, small high-contrast, and large high-contrast) were used to examine cuttlefish embryo’s ability of body patterning development. The results showed that cuttlefish could express some disruptive components at stage 27, though the full function of body pattern control was not developed completely before hatching. Taken together, this study suggests that the peripheral neural control of the chromatophore system develops early and is regulated by both pre- and post-synaptic mechanisms with various neurotransmitters.

    中文摘要 i Abstract ii 誌謝 iv Contents vii Chapter 1 Introduction 1 1.1. Dynamic body pattern of cephalopods 1 1.2. The elements involved in body patterns 1 1.3. Structure of chromatophores 2 1.4. Neurotransmitter of chromatophores 3 1.5. Development of chromatophores and its control 6 1.6. Specific aims 7 Chapter 2 Materials and methods 8 2.1. Subjects 8 2.2. Experimental design 8 2.3. Data analysis 12 Chapter 3 Results 17 3.1. Peripheral neural control of body patterning in oval squids 17 3.2. Development of body patterning control in cuttlefish 20 Chapter 4 Discussion 23 4.1. Peripheral neural control of body patterning in oval squids 23 4.2. Neural development of body patterning in cuttlefish 26 4.3. Functional development of body patterning in embryonic cuttlefish 27 4.4. Conclusion 28 References 30 Figures 35 Figure 1. Side view of the experimental setup for the squid experiment 35 Figure 2. Side view of the experimental setup for the cuttlefish experiment 36 Figure 3. The experimental design for assessing body pattern control in cuttlefish 37 Figure 4. The comparison of the MetaMorph method and ImageJ method 38 Figure 5. Chromatic components used in grading disruptive pattern of cuttlefish 38 Figure 6. Chromatophore expansion induced by ectopic application of L-Glutamate on the skin of an oval squid 39 Figure 7. The speed of brown chromatophore expansion upon L-Glutamate application varies across different chromatophores and skins 40 Figure 8. Chromatophore retraction induced by ectopic application of serotonin on the skin of an oval squid 41 Figure 9. The speed of brown chromatophore retraction upon serotonin application varies across different chromatophores and skins. 42 Figure 10. Chromatophore expansion induced by ectopic application of acetylcholine on the skin of an oval squid 43 Figure 11. The speed of brown chromatophore expansion upon acetylcholine application varies across different skins 44 Figure 12. Chromatophore expansion induced by ectopic application of AMPA or NMDA on the skin of an oval squid 45 Figure 13. The speeds of brown and yellow chromatophore expansion upon AMPA application (100 mM) in three different samples are consistent 46 Figure 14. The speeds of brown and yellow chromatophore expansion upon NMDA application (100 mM) vary across four different samples 47 Figure 15. Expansion and retraction of brown chromatophores upon L-Glutamate and serotonin applications, respectively, in cuttlefish embryos of developmental stages 25-30 48 Figure 16. The speed of brown chromatophore response to drugs varies in different developmental stages 49 Figure 17. Cuttlefish could express some disruptive components after developmental stage 27 50 Figure 18. The functional development of disruptive pattern is not completed even after hatching for 1 week 51 Figure S1. The score of each component for cuttlefish on different backgrounds at different developmental stages 52

    Barbosa, A., Mathger, L.M., Chubb, C., Florio, C., Chiao, C.C., and Hanlon, R.T. (2007). Disruptive coloration in cuttlefish: a visual perception mechanism that regulates ontogenetic adjustment of skin patterning. Journal of Experimental Biololgy 210, 1139-1147.

    Bone, Q., and Howarth, J.V. (1980). The Role of L-Glutamate in Neuromuscular-Transmission in Some Mollusks. Journal of the Marine Biological Association of the United Kingdom 60, 619-626.

    Boycott, B.B. (1961). Functional Organization of Brain of Cuttlefish Sepia Officinalis. Proceedings of the Royal Society Series B Biological Sciences 153, 503-534.

    Brown, E.R., Piscopo, S., Chun, J.T., Francone, M., Mirabile, I., and D'Aniello, A. (2007). Modulation of an AMPA-like glutamate receptor (SqGluR) gating by L- and D-aspartic acids. Amino Acids 32, 53-57.

    Chiao, C.C., and Hanlon, R.T. (2001). Cuttlefish camouflage: visual perception of size, contrast and number of white squares on artificial checkerboard substrata initiates disruptive coloration. Journal of Experimental Biololgy 204, 2119-2125.

    Chiao, C.C., Kelman, E.J., and Hanlon, R.T. (2005). Disruptive body patterning of cuttlefish (Sepia officinalis) requires visual information regarding edges and contrast of objects in natural substrate backgrounds. Biological Bulletin 208, 7-11.

    Cloney, R.A., and Brocco, S.L. (1983). Chromatophore Organs, Reflector Cells, Iridocytes and Leucophores in Cephalopods. American Zoologist 23, 581-592.

    Cloney, R.A., and Florey, E. (1968). Ultrastructure of Cephalopod Chromatophore Organs. Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie 89, 250-280.

    Collins, T.F.T., and Tsutsui, I. (2003). Neurotransmitters of mantle and fin muscles in spear squid, Loligo bleekeri. Journal of the Marine Biological Association of the United Kingdom 83, 857-860.

    Di Cosmo, A., Di Cristo, C., and Messenger, J.B. (2006). L-glutamate and its ionotropic receptors in the nervous system of cephalopods. Current Neuropharmacology 4, 305-312.

    Di Cosmo, A., Paolucci, M., and Di Cristo, C. (2004). N-methyl-D-aspartate receptor-like immunoreactivity in the brain of Sepia and Octopus. Journal of Comparative Neurology 477, 202-219.

    Domingues, P.M., Kingston, T., Sykes, A., and Andrade, J.P. (2001). Growth of young cuttlefish, Sepia officinalis (Linnaeus 1758) at the upper end of the biological distribution temperature range. Aquaculture Research 32, 923-930.

    Dubas, F., Hanlon, R.T., Ferguson, G.P., and Pinsker, H.M. (1986a). Localization and stimulation of chromatophore motoneurones in the brain of the squid, Lolliguncula brevis. Journal of Experimental Biololgy 121, 1-25.

    Dubas, F., Leonard, R.B., and Hanlon, R.T. (1986b). Chromatophore motoneurons in the brain of the squid, Lolliguncula brevis: an HRP study. Brain Research 374, 21-29.

    Florey, E. (1966). Nervous control and spontaneous activity of the chromatophores of a cephalopod, Loligo opalescens. Comparative Biochemistry and Physiology 18, 305-324.

    Florey, E., Dubas, F., and Hanlon, R.T. (1985). Evidence for L-glutamate as a transmitter substance of motoneurons innervating squid chromatophore muscles. Comparative Biochemistry and Physiology 82C, 259-268.

    Florey, E., and Kriebel, M.E. (1969). Electrical and Mechanical Responses of Chromatophore Muscle Fibers of Squid, Loligo Opalescens, to Nerve Stimulation and Drugs. Zeitschrift Fur Vergleichende Physiologie 65, 98-130.

    Gaston, M.R., and Tublitz, N.J. (2004). Peripheral innervation patterns and central distribution of fin chromatophore motoneurons in the cuttlefish Sepia officinalis. Journal of Experimental Biololgy 207, 3089-3098.

    Goodwin, E., and Tublitz, N. (2013). Video analyses of chromatophore activity in the European cuttlefish, Sepia officinalis. Journal of Experimental Marine Biology and Ecology 447, 156-159.

    Hanley, J.S., Shashar, N., Smolowitz, R., Bullis, R.A., Mebane, W.N., Gabr, H.R., and Hanlon, R.T. (1998). Modified laboratory culture techniques for the European cuttlefish Sepia officinalis. Biological Bulletin 195, 223-225.

    Hanlon, R.T. (2007). Cephalopod dynamic camouflage. Current Biology 17, R400-404.

    Hanlon, R.T., Maxwell, M.R., Shashar, N., Loew, E.R., and Boyle, K.L. (1999). An ethogram of body patterning behavior in the biomedically and commercially valuable squid Loligo pealei off Cape Cod, Massachusetts. Biological Bulletin 197, 49-62.

    Hanlon, R.T., and Messenger, J.B. (1988). Adaptive Coloration in Young Cuttlefish (Sepia Officinalis L) : the Morphology and Development of Body Patterns and Their Relation to Behavior. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 320, 437-487.

    Hanlon, R.T., and Messenger, J.B. (1996). Cephalopod behaviour (Cambridge: Cambridge University Press).

    Jantzen, T.M., and Havenhand, J.N. (2003). Reproductive behavior in the squid Sepioteuthis australis from South Australia: ethogram of reproductive body patterns. Biological Bulletin 204, 290-304.

    Kühn, A., and Heberdey., R.F. (1929). Über die Anpassung von Sepia officinalis an Helligkeit und Farbton der Umgebung. Verh Deutsche Zool Ges 33, 231-237.

    Kahr, H. (1959). Zur Endokrinen Steuerung Der Melanophoren-Reaktion Bei Octopus Vulgaris. Zeitschrift Fur Vergleichende Physiologie 41, 435-448.

    Lee, M.F., Lin, C.Y., Chiao, C.C., and Lu, C.C. (2016). Reproductive behavior and embryonic development of the pharaoh cuttlefish, Sepia pharaonis (Cephalopda: Sepiidae). Zoologic Studies 55, 55-41.

    Lee, Y.H. (2012). The effects of early visual experience on behavioral and neural palsticity in cuttlefish Sepia pharaonis, Ph. D thesis (Hsinchu: National Tsing Hau University)

    Lee, Y.H., Yan, H.Y., and Chiao, C.C. (2010). Visual contrast modulates maturation of camouflage body patterning in cuttlefish (Sepia pharaonis). Journal of Comparative Psychololgy 124, 261-270.

    Lima, P.A., Messenger, J.B., and Brown, E.R. (1997). Monitoring cytoplasmic Ca2+ in cephalopod chromatophore muscles. Journal of Physiology, London 504.P, P2-P3.

    Lima, P.A., Nardi, G., and Brown, E.R. (2003). AMPA/kainate and NMDA-like glutamate receptors at the chromatophore neuromuscular junction of the squid: role in synaptic transmission and skin patterning. The European Journal of Neuroscience 17, 507-516.

    Loi, P.K., Saunders, R.G., Young, D.C., and Tublitz, N.J. (1996). Peptidergic regulation of chromatophore function in the European cuttlefish Sepia officinalis. Journal of Experimental Biololgy 199, 1177-1187.

    Loi, P.K., and Tublitz, N.J. (1997). Molecular analysis of FMRFamide- and FMRFamide-related peptides (FaRPS) in the cuttlefish Sepia officinalis. Journal of Experimental Biololgy 200, 1483-1489.

    Loi, P.K., and Tublitz, N.J. (2000). Roles of glutamate and FMRFamide-related peptides at the chromatophore neuromuscular junction in the cuttlefish, Sepia officinalis. Journal of comparative Neurology 420, 499-511.

    Marshall, N.J., and Messenger, J.B. (1996). Colour-blind camouflage. Nature 382, 408-409.

    Marthy, H.J., Hauser, R., and Scholl, A. (1976). Natural tranquilliser in cephalopod eggs. Nature 261, 496-497.

    Messenger, J., Cornwell, C., and Reed, C. (1997). L-Glutamate and serotonin are endogenous in squid chromatophore nerves. Journal of Experimental Biololgy 200 3043-3054.

    Messenger, J.B. (2001). Cephalopod chromatophores: neurobiology and natural history. Biological Review of the Cambridge Philosophocal Society 76, 473-528.

    Messenger, J.B., Nixon, M., and Ryan, K.P. (1985). Magnesium chloride as an anaesthetic for cephalopods. Comparative Biochemistry and Physiology 82C, 203-205.

    Packard, A. (1985). Sizes and distribution of chromatophores during post-embryonic development in cephalopd. Vie et Milieu 35, 285-298.

    Poirier, R., Chichery, R., and Dickel, L. (2005). Early experience and postembryonic maturation of body patterns in cuttlefish (Sepia officinalis). Journal of Comparative Psychololgy 119, 230-237.

    Suzuki, M., Kimura, T., Ogawa, H., Hotta, K., and Oka, K. (2009). FMRFamide elicits chromatophore expansion and retraction depending on its type and development in the squid, Sepioteuthis lessoniana. Invertebrate Neuroscience 9, 185-193.

    Suzuki, M., Kimura, T., Ogawa, H., Hotta, K., and Oka, K. (2011). Chromatophore activity during natural pattern expression by the squid Sepioteuthis lessoniana: contributions of miniature oscillation. PLoS One 6, e18244.

    Williamson, R., and Chrachri, A. (2004). Cephalopod neural networks. Neurosignals 13, 87-98.

    Yacob, J., Lewis, A.C., Gosling, A., St Hilaire, D.H., Tesar, L., McRae, M., and Tublitz, N.J. (2011). Principles underlying chromatophore addition during maturation in the European cuttlefish, Sepia officinalis. Journal of Experimental Biololgy 214, 3423-3432.

    Young, J.Z. (1976). The nervous system of Loligo II. Subesophageal centers. Philosophical Transactions of the Royal Society B, Biological Sciences 274, 101-167.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE