簡易檢索 / 詳目顯示

研究生: 謝佩珊
Hsieh, Pei-Shan
論文名稱: 具增進電荷平衡結構之新型600伏等級超級接面金氧半場效電晶體
Novel 600V-Class Charge-Balance-Enhanced Super Junction Power MOSFET (CBE-SJ MOS)
指導教授: 金雅琴
King, Ya-Chin
林崇榮
Lin, Chrong-Jung
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 86
中文關鍵詞: 超級接面功率金氧半場效電晶體特徵導通電阻崩潰電壓電荷平衡
外文關鍵詞: Super Junction, Power MOSFET, Ron,sp, Breakdown Voltage, Charge Balance
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在高壓功率元件的開發中,如何獲得良好的崩潰電壓及導通電阻(的權衡一直是研究的重點。儘管許多的研究發表,都顯示能夠在降低導通電阻的同時,維持耐壓等級。但是,在特定的額定崩潰電壓之下阻值降低的程度終究有極限存在,而這便是我們所熟知的矽極限(Silicon-limit)。
    近年來,隨著超級接面(Super Junction) 概念的提出,具有高摻雜濃度的超級接面結構能夠有效改善崩潰電壓與導通電阻之間的關係,並且可以突矽極限,因此,許多結合超級接面結構的新型高壓功率元件便應運而生。然而,在製程方面,如何使得超級接面結構中,不同摻雜類型的柱狀區載子濃度互相匹配,達到電荷平衡,更是另外一項重要的挑戰。
    此論文中,我們提出一個具增進電荷平衡結構之新型600伏等級
    超級接面金氧半場效電晶體(Charge-Balance-Enhanced Super Junction MOSFET,簡稱CBE-SJ MOS),希望藉由減緩元件在製作過程中,熱步驟對載子濃度以及特性的影響,進而獲得元件最佳化的表現。並藉由TCAD軟體的模擬,使用TSUPREME4與MEDICI的搭配,達到額定電壓為600伏特並具有超低導通電阻的新型超級接面金氧半場效電晶體(CBE-SJ MOS)其晶胞與周邊耐壓結構的設計。


    In designing power devices using conventional P/N junctions, the tradeoff between breakdown voltage (Bv) and on-state resistance (Ron) has always been a major concern. Many studies have proposed various structures to sustain high Bv level while reducing the Ron. However, it is generally believed that under the same Bv, there is a limit on how low Ron can be, which is called “Silicon-limit”.
    By adapting the Super Junction (SJ) concept, highly doped SJ structure can effectively improve the Bv while reducing the Ron; hence break the Silicon-limit. Due to its superior characteristics, SJ has become the promising solution in high voltage power device applications. The fabrication of SJ devices faces the challenge of creating P/N pillars with matching impurity concentrations after thermal process.
    This thesis introduced a novel Charge-Balance-Enhanced Super Junction MOSFET, CBE-SJ MOS; which helps to promote charge-balance in the super junctions. By TCAD simulation, the newly designed cell and termination structures of CBE-SJ MOS is proven to endure 600Volt reverse voltage with ultra low on-state resistance.

    內文目錄 頁次 中文摘要 i 英文摘要 ii 誌謝 iii 內文目錄 iv 附圖目錄 vi 表格目錄 ix 第一章 序論 1 1.1 研究動機 1 1.2 章節介紹 3 第二章 Power MOSFET操作原理與發展回顧 4 2.1 Power MOSFET操作原理 5 2.1.1 導通與耐壓機制 5 2.1.2 崩潰機制 8 2.2 Power MOSFET發展回顧 10 2.2.1 Power MOSFET基本結構 11 2.2.2 垂直式Power MOSFET 11 2.2.3 橫向式Power MOSFET 12 2.3 Super Junction 介紹 15 2.3.1 Super Junction基本結構與操作原理 15 2.3.2 Super Junction製作方法 16 2.3.3 Super Junction於Power MOSFET中的應用 18 2.4 總結 19 第三章 具增進電荷平衡結構之新型超級接面元件設計 40 3.1 CBE-SJ Diode設計 41 3.2 CBE-SJ Diode元件優化模擬 42 3.2.1 CBE-SJ Diode柱狀區深度調變模擬 42 3.2.2 CBE-SJ Diode氧化層厚度調變模擬 42 3.2.3 CBE-SJ Diode柱狀區濃度調變模擬 43 3.2.4 CBE-SJ Diode電荷不平衡模擬 44 3.3 CBE-SJ Diode與傳統SJ-Diode比較 45 3.3.1 CBE-SJ Diode與傳統SJ-Diode製程模擬條件 45 3.3.2 CBE-SJ Diode與傳統SJ-Diode電性模擬 46 3.4 CBE-SJ MOS元件 47 3.4.1 晶胞結構設計與製作流程 47 3.4.2 周邊耐壓結構設計 47 3.5總結 48 第四章 新型超級接面金氧半場效電晶體電性模擬 66 4.1 CBE-SJ MOS元件晶胞製程模擬 66 4.2 CBE-SJ MOS元件晶胞電性模擬 67 4.2.1 導通狀態 67 4.2.2 關閉狀態 67 4.2.3 電荷不平衡 68 4.3 CBE-SJ MOS元件周邊耐壓結構電性模擬 69 4.4 CBE-SJ MOS元件特性比較 69 4.7 總結 70 第五章 結論 81 參考文獻 82

    [1] B.Murari, F.Bertotti, and G.A.Vignola, “Smart Power ICs”.
    [2] Jun Sakakibara, et.al, “600V-class Super Junction MOSFET with High Aspect Ratio P/N Columns Structure”, Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, 2008
    [3] T. Yue, M. Kumar, C. Jun, and J. K. O. Sin, “A SOI LDMOS technology compatible with CMOS, BJT, and passive components for fully-integrated RF power amplifiers”, IEEE Trans. on Elec. Dev., vol.48, pp. 2428-2433, 2001.
    [4] T. Kobayashi, H. Abe, Y. Niimura, T. Yamada, A. Kurosaki, T. Hosen, and T. Fujihira, “High-Voltage Power MOSFETs Reached Almost to the Silicon Limit”, Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, pp. 435-438, 2001.
    [5] Cézac N., Morancho F., Rossel P., Tranduc H., Peyre-Lavigne A., “A New Generation of Power Unipolar Devices: the Concept of the FLoating Islands MOS Transistor (FLIMOST)”, Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, pp. 69 - 72, May 2000.
    [6] Chen X.B., Mawby P.A., Board K., Salama C.A.T, “Theory of a novel voltage-sustaining layer for power devices”, Microelectronics Journal, pp. 1005 - 1011, 1998.
    [7] Tatsuhiko Fujihira, “Theory of Semiconductor Super junction Devices”, JJAP, pp. 6254-6262, 1997.
    [8] P. N. Kondekar, M. B. Patil, and C. D. Parikh, “Analysis and design of super junction power MOSFET: CoolMOSTM for improved on resistance and breakdown voltage using theory of novel voltage sustaining layer,” in Proc. MIEL, vol. 1, 2002, pp. 209–212.
    [9] Liang Y.C., Gan K.P., Samudra G.S., “Oxide-bypassed VDMOS (OBVDMOS): an alternative to super junction high voltage MOS power devices, Electron Device Letters”, Vol. 22, pp. 407-409, 2001.
    [10] G. Deboy, M. Marz, J. P. Stengl, H. Strack, J. Tihanyi, and H. Weber,“A new generation of high voltage MOSFETs breaks the limit line of silicon,” in IEDM Tech. Dig., 1998, pp. 683–685.
    [11] P. N. Kondekar, C. D. Parikh, and M. B. Patil, “Analysis of Breakdown Voltage And On Resistance of Super-Junction Power MOSFET CoolMOS™ Using Theory of Novel Voltage Sustaining Layer,”Proc. Power Electronics Specialists Conference, vol. 4, pp. 1769-1775, 2002.
    [12] E. Napoli and A. G. M. Strollo, “Design Consideration of 1000V Merged PiN Schottky Diode Using Super junction Sustaining Layer,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, pp. 339-342, 2001.
    [13] P. M. Shenoy, A. Bhalla, and G. M. Dolny, “Analysis of the Effect of Charge Imbalance on the Static and Dynamic Characteristics of the Super Junction MOSFET,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, pp. 99-102, 1999.
    [14] B. Zhang, Z. Xu, and A. Q. Huang, “Analysis of the Forward Biased Safe Operating Area of the Super Junction MOSFET,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, pp. 61-64, 2000.
    [15] X. B. Chen and J. K. O. Sin, “Optimization of the Specific On-Resistance of the COOLMOSTM,” IEEE Trans. Electron Devices, vol. ED-48, no. 2, pp. 344-348, 2001.
    [16] 12th European Conference in Power Electronics and Applications Tutorial
    [17] A. Teramoto, H. Umeda, K. Azamawari', K. Kobayashi', K. Shiga, J. Komori, Y. Ohno, and H. Miyoshi “Study of Oxide Breakdown under Very Low Electric Field”, IEEE,1999
    [18] B.Jayant Baliga, “Power Semiconductor Devices”. Boston, MA: PWS,1996
    [19] I.Y. Park, et al, “Numerical analysis on the LDMOS with a double Epi-layer and trench electrodes,” Microelectronics Journal volume 32, May-June 2001, Pages 497-502
    [20] Haipeng Zhang, Lifei Jiang, Lingling Sun, Wenjun Li, et al, “A Novel SOI LDMOS with A Trench Gate and Field Plate and Trench Drain FOR RF Application ,” IEEE,2007
    [21] P. H. Wilson “A Novel Trench Gate LDMOS,” IEEE, 2003
    [22] Yung C. Liang, Shuming Xu, Changhong Ren and Pang-Dow Foo,”New Partial SOI LDMOS Device with High Power-Added Efficiency for 2GHz RF Power Amplifier Application,” IEEE, 2000
    [23] Changhong Ren, Jun Cai, Yung C. Liang, Pick Hong Ong, N. Balasubramanian, and Johnny K. O. Sin, “The Partial Silicon-on-Insulator Technology for RF Power LDMOSFET Devices and On-Chip Micro inductors” IEEE Trans. Electron Devices, Vol. 49, No. 12, December 2002
    [24] J. A. Appeals, and H. M. J. Vaes, “High-voltage thin layer devices (RESURF devices),” IEDM Tech. Dig., pp. 238-239, 1979
    [25] A. W. Ludikhuize, “A Review of RESURF Technology,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, pp. 11-18, 2000
    [26] D. Coe, patent EP 0053854, US 4,754.310
    [27] M. H. Kim, J. J. Kim, Y. S. Choi, C.K. Jeon, S.L. Kim, H.S. Kang and C.S. Song, ”A Low On Resistance 700V Charge Balanced LDMOS with Intersected WELL Structure”, Proc. Intl. Symp. Power Semiconductor Devices &Integrated Circuits 2003, pp220-223
    [28] Ettore Napoli, Han Wang, and Florin Udrea, “The Effect of Charge Imbalance on Super junction Power Devices: An Exact Analytical Solution”, IEEE EDL, VOL. 29, NO. 3, 2008.
    [29] T. Minato, T. Nitta, A. Uenisi, M. Yano, M. Harada, and S. Hine, “Which is cooler, Trench or Multi- Epitaxy?,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, 2000.
    [30] S. Iwamoto, K. Takahashi, H. Kuribayashi, S. Wakimoto, K. Mochizuki, and H. Nakazawa, ”Above 500V class Super junction MOSFETs Fabricated by Deep Trench Etching and Epitaxial Growth,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, 2005.
    [31] Hua Ye, and Pradeep Haldar, “A MOS Gated Power Semiconductor Switch Using Band-to-Band Tunneling and Avalanche Injection Mechanism”, IEEE TED, VOL. 55, NO. 6, 2008
    [32] L. Lorenz, G. Deboy, M. Marz, “COOLMOSTM-a new approach towards high efficient power supplies,” PCIM Europe (6/1999)
    [33] L. Lorenz, G. Deboy, A. Knapp; M. Marz., “COOLMOSTM-a new milestone in high voltage power MOS,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, May 1999, P3 – 10
    [34] B.Jayant Baliga, “Modern Power Devices”. New York: Wiley 1987
    [35] Sameh G. Nassif-Khalil, Li Zhang Hou, and C. Andre T. Salama l, “SJ/RESURF LDMOST,” IEEE Trans. Electron Devices, Vol. 51, pp. 1185-1191, 2004
    [36] I. Y. Park and C. Andre T. Salama, “CMOS compatible super-junction LDMOST with N-buffer layers,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, 2005, pp. 163-166
    [37] I. Y. Park and C. Andre T. Salama, “New super junction LDMOST with N-buffer layer,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, 2006, pp. 1909-1903
    [38] D. Shahrjerdi, M. Fathipour, B. Hekmatshoar, A. Khakifirooz, “A lateral structure for low-cost fabrication of COOLMOSTM,” Solid-State Electronics 48 (2004), pp. 1953-1957.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE