研究生: |
陳冠臻 |
---|---|
論文名稱: |
濕式製程有機及有機/無機混成太陽能電池 Solution-Processed Organic and Organic-Inorganic Hybrid Solar Cells |
指導教授: | 林皓武 |
口試委員: |
汪根欉
朱治偉 吳志毅 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 166 |
中文關鍵詞: | 有機太陽能電池 、有機無機混成太陽能電池 、有機小分子 、濕式溶液製程 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文研究濕式製程有機小分子太陽能電池與有機/無機混成太陽能電池元件結構與特性。
第一章節中,簡介近代太陽能電池的發展,並回顧有機小分子太陽能電池、有機高分子太陽能電池、有機/無機矽晶混成太陽能電池與有機/無機鈣鈦礦太陽能電池的歷史及現況發展。
第二章中,概述太陽能電池的元件特性與有機小分子太陽能電池與有機/無機混成太陽能電池的運作原理以及光電特性,接著介紹元件結構、有機材料的準備與分析、元件製作流程,最後為元件量測方法。
第三章中,我們針對一系列acceptor-acceptor-donor-acceptor-acceptor (A-A-D-A-A) 子做為有機太陽能電池中的施體,藉由不同濕式製程方法、不同元件結構與搭配不同受體改善元件效率。其中,優化過後JW2具備最佳表現,開路電壓為0.85 V,短路電流為5.26 mA/cm2,填充因子為0.39,效率達1.7 %。
第四章中,我們使用紫外光臭氧法生成表面鈍化層以製作平面型有機/無機混成矽晶太陽能電池,並進一步探討鈍化層的光電特性對於元件效率的影響。接下來,將透明介電材料與金屬的層疊結構應用於平面型有機/無機混成矽晶太陽能電池。最後,我們於矽晶表面蝕刻金字塔結構,並利用光學顯微鏡與穿透式電子顯微鏡觀察表現特徵。
第五章中,我們首先使用溼式製程刮刀塗佈法與旋轉塗佈法製程鈣鈦礦薄膜,接著使用最佳表面特性之鈣鈦礦薄膜製程元件,優化過後最佳表現為開路電壓為0.87 V,短路電流為20.74 mA/cm2,填充因子為0.65,效率達11.7 %。進一步調控吸收層中鹵素比例,可以將效率提升至13.8 %。此章節最後一部分,我們嘗試使用不同電荷傳輸層並成功製程無氧化銦錫電極之鈣鈦礦太陽能電池。
In this thesis, I focus on the fabrication and characterization of solution-processed small molecule organic solar cells (SMOSCs) and organic-inorganic hybrid solar cells.
In the first chapter, I briefly review the development of modern photovoltaics including SMOSCs, polymer solar cells, silicon/organic organic-inorganic hybrid solar cells and perovskite solar cells.
In the second chapter, the operation principles and characteristics of organic and organic-inorganic hybrid solar cells are described, followed by the details of device structures, materials analyses, device fabrications and characteristics measurements.
In the third chapter of the thesis, a series of acceptor-acceptor-donor-acceptor-acceptor (A-A-D-A-A) symmetrical small molecules are studied as donor material for solution-processed SMOSCs. Various fabrication methods, device structures and acceptor materials are used to optimize the cell performance. Among all compounds, JW2 gives the highest power conversion efficiency (PCE) of 1.7 %, with an open circuit voltage (Voc) of 0.85 V, a short circuit current density (Jsc) of 5.26 mA/cm2, and a fill factor (F.F.) of 0.39.
In the fourth chapter, we fabricate planar-type organic-inorganic hybrid solar cells based on single crystalline silicon covered by organic hole transporting material poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS). A simple surface passivation method: Ultraviolet (UV)-ozone treatment is demonstrated. The effects of Si/PEDOT:PSS interfaces on device performances are further studied. In the second part of this chapter, the dielectric material-metal-dielectric material (DMD) structures as transparent electrodes are applied to the planar-type organic-inorganic solar cells. Finally, pyramid structures are tested and investigated under optical microscope and scanning electron microscope.
In the fifth chapter of the thesis, blade-coated and spin-coated perovskite films are first fabricated. High efficiency solution-processed perovskite solar cells with an optimized annealing time and electron transporting layer thickness deliver a PCE of 11.7 %, with Voc of 0.87 V, a Jsc of 20.74 mA/cm2, a F.F. of 0.65. The PCE is further improved to 13.8 % by fine tuning of the material composition in the perovskite absorbing layers. In the last part of this section, several transporting layers are inserted into the device structures and Indium Tin Oxide (ITO)-free perovskite solar cells are successfully fabricated.
1. C. Zuchora-Walske and M. McGehee, Solar Energy, Essential Library, 2013.
2. J. Kruger, Ph. D. Thesis, 2003.
3. N. R. E. Laboratory, http://www.nrel.gov/.
4. P. E. Tomaszewski and R. W. Cahn, Jan Czochralski and His Method of Pulling Crystals, MRS Bull., 2004, 29, 348.
5. S. W. Glunz, R. Preu and D. Biro, Crystalline Silicon Solar Cells: State-of-the-Art and Future Developments, ed. A. Sayigh, Elsevier, Oxford, 2012, 353.
6. V. Petrova-Koch, R. Hezel and A. Goetzberger, High-Efficient Low-Cost Photovoltaics, Springer, 2009.
7. D. M. Chapin, C. S. Fuller and G. L. Pearson, A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power, J. Appl. Phys., 1954, 25, 676.
8. J. Zhao, A. Wang and M. A. Green, 24.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates, Res. Appl., 1999, 7, 471.
9. O. Schultz, W. Glunz S and G. P. Willeke, Multicrystalline Silicon Solarcells exceeding 20% efficiency, Res. Appl., 2004, 12, 533.
10. M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Solar cell efficiency tables (version 44), Progress in Photovoltaics: Research and Applications, 2014, 22, 701.
11. D. E. Carlson and C. R. Wronski, Amorphous silicon solar cell, Appl. Phys. Lett., 1976, 28, 671.
12. J. Yang, A. Banerjee and S. Guha, Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies, Appl. Phys. Lett., 1997, 70, 2975.
13. X. Wu, High-efficiency polycrystalline CdTe thin-film solar cells, Sol Energy, 2004, 77, 803.
14. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, 19•9%-efficient ZnO/CdS/CuInGaSe2solar cell with 81•2% fill factor, Progress in Photovoltaics: Research and Applications, 2008, 16, 235.
15. M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Solar cell efficiency tables (version 43), Progress in Photovoltaics: Research and Applications, 2014, 22, 1.
16. W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. Appl. Phys., 1961, 32, 510.
17. J. Desilvestro, M. Graetzel, L. Kavan, J. Moser and J. Augustynski, Highly efficient sensitization of titanium dioxide, JACS, 1985, 107, 2988.
18. R. Amadelli, R. Argazzi, C. A. Bignozzi and F. Scandola, Design of antenna-sensitizer polynuclear complexes. Sensitization of titanium dioxide with [Ru(bpy)2(CN)2]2Ru(bpy(COO)2)22, JACS, 1990, 112, 7099.
19. M. K. Nazeeruddin, P. Liska, J. Moser, N. Vlachopoulos, M. Grätzel, P. Liska, J. Moser, N. Vlachopoulos and M. Grätzel, Conversion of Light into Electricity with Trinuclear Ruthenium Complexes Adsorbed on Textured TiO2 Films, Helv. Chim. Acta, 1990, 73, 1788.
20. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos and M. Grätzel, Conversion of Light to Electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate)Ruthenium(Ii) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on Nanocrystalline TiO2 Electrodes, JACS, 1993, 115, 6382.
21. M. K. Nazeeruddin, P. Péchy and M. Grätzel, Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex, Chem. Commun., 1997, 1705.
22. M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C. H. Fischer and M. Grätzel, Acid-base equilibria of (2,2 '-bipyridyl-4,4 '-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania, Inorg. Chem., 1999, 38, 6298.
23. X. Liu, Y. Cheng, L. Wang, L. Cai and B. Liu, Light controlled assembling of iodine-free dye-sensitized solar cells with poly(3,4-ethylenedioxythiophene) as a hole conductor reaching 7.1% efficiency, Phys. Chem. Chem. Phys., 2012.
24. J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N. L. Cevey-Ha, C. Yi, M. K. Nazeeruddin and M. Gratzel, Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells, J. Am. Chem. Soc., 2011, 133, 18042.
25. D. Kearns and M. Calvin, Photovoltaic Effect and Photoconductivity in Laminated Organic Systems, J. Chem. Phys., 1958, 29, 950.
26. C. W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett., 1986, 48, 183.
27. P. Peumans, V. Bulović and S. R. Forrest, Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes, Appl. Phys. Lett., 2000, 76, 2650.
28. P. Peumans and S. R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C[sub 60] photovoltaic cells, Appl. Phys. Lett., 2001, 79, 126.
29. B. E. Lassiter, G. Wei, S. Wang, J. D. Zimmerman, V. V. Diev, M. E. Thompson and S. R. Forrest, Organic photovoltaics incorporating electron conducting exciton blocking layers, Appl. Phys. Lett., 2011, 98, 243307.
30. M. Hirade and C. Adachi, Small molecular organic photovoltaic cells with exciton blocking layer at anode interface for improved device performance, Appl. Phys. Lett., 2011, 99, 153302.
31. M. Hiramoto, M. Suezaki and M. Yokoyama, Effect of Thin Gold Interstitial-layer on the Photovoltaic Properties of Tandem Organic Solar Cell, Chem. Lett., 1990, 3, 327.
32. M. Hiramoto, H. Fujiwara and M. Yokoyama, p‐i‐n like behavior in three‐layered organic solar cells having a co‐deposited interlayer of pigments, J. Appl. Phys., 1992, 72, 3781.
33. B. Walker, C. Kim and T.-Q. Nguyen, Small Molecule Solution-Processed Bulk Heterojunction Solar Cells†, Chem. Mater., 2011, 23, 470.
34. J. Zhou, Y. Zuo, X. Wan, G. Long, Q. Zhang, W. Ni, Y. Liu, Z. Li, G. He, C. Li, B. Kan, M. Li and Y. Chen, Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit, J. Am. Chem. Soc., 2013, 135, 8484.
35. C. N. Hoth, S. A. Choulis, P. Schilinsky and C. J. Brabec, High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends, Adv. Mater., 2007, 19, 3973.
36. J.-H. Chang, Y.-H. Chen, H.-W. Lin, Y.-T. Lin, H.-F. Meng and E.-C. Chen, Highly efficient inverted rapid-drying blade-coated organic solar cells, Org. Electron., 2012, 13, 705.
37. Y.-H. Chang, S.-R. Tseng, C.-Y. Chen, H.-F. Meng, E.-C. Chen, S.-F. Horng and C.-S. Hsu, Polymer solar cell by blade coating, Org. Electron., 2009, 10, 741.
38. M. Pudas, J. Hagberg and S. Leppävuori, Gravure offset printing of polymer inks for conductors, Prog. Org. Coat., 2004, 49, 324.
39. J. Tsukamoto, H. Ohigashi, K. Matsumura and A. Takahashi, A Schottky Barrier Type Solar Cell Using Polyacetylene, Jpn. J. Appl. Phys., 1981, 20, L127.
40. N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science, 1992, 258, 1474.
41. J. J. M. Halls, K. Pichler and R. H. Friend, Exciton diffusion and dissociation in a poly(p‐phenylenevinylene)/C60 heterojunction photovoltaic cell, Appl. Phys. Lett., 1996, 68, 3120.
42. G. Yu, K. Pakbaz and A. J. Heeger, Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible‐ultraviolet sensitivity, Appl. Phys. Lett., 1994, 64, 3422.
43. G. Yu, J. Gao, C. Hummelen, F. Wudi and A. J. Heeger, Polymer photovoltaic cells enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, 1995, 270, 1789.
44. F. Padinger, R. S. Rittberger and N. S. Sariciftci, Effects of Postproduction Treatment on Plastic Solar Cells, Adv. Funct. Mater., 2003, 13, 85.
45. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nat. Mater., 2005, 4, 864.
46. W. L. Ma, C. Y. Yang, X. Gong, K. Lee and A. J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Adv. Funct. Mater., 2005, 15, 1617.
47. X. Li, W. C. Choy, L. Huo, F. Xie, W. E. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You and Y. Yang, Dual plasmonic nanostructures for high performance inverted organic solar cells, Adv. Mater., 2012, 24, 3046.
48. C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S.-W. Tsang, T. H. Lai, J. R. Reynolds and F. So, High-efficiency inverted dithienogermole– thienopyrrolodione-based polymer solar cells, Nat. Photon., 2012, 6, 115.
49. Z. Tan, W. Zhang, Z. Zhang, D. Qian, Y. Huang, J. Hou and Y. Li, High-performance inverted polymer solar cells with solution-processed titanium chelate as electron-collecting layer on ITO electrode, Adv. Mater., 2012, 24, 1476.
50. T. Yang, M. Wang, C. Duan, X. Hu, L. Huang, J. Peng, F. Huang and X. Gong, Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte, Energy Environ. Sci., 2012, 5, 8208.
51. J. You, C. C. Chen, L. Dou, S. Murase, H. S. Duan, S. A. Hawks, T. Xu, H. J. Son, L. Yu, G. Li and Y. Yang, Metal oxide nanoparticles as an electron-transport layer in high-performance and stable inverted polymer solar cells, Adv. Mater., 2012, 24, 5267.
52. Z. He, C. Zhong, S. Su, M. Xu, H. Wu and Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nat. Photon., 2012, 6, 591.
53. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li and Y. Yang, A polymer tandem solar cell with 10.6% power conversion efficiency, Nat Commun, 2013, 4, 1446.
54. Mitsubishi Chemical, http://www.m-kagaku.co.jp/english/r_td/strategy/technology/topics/opv/index.html, 2012.
55. G. Kalita, S. Adhikari, H. R. Aryal, R. Afre, T. Soga, M. Sharon, W. Koichi and M. Umeno, Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes, J. Phys. D: Appl. Phys., 2009, 42, 115104.
56. S.-C. Shiu, J.-J. Chao, S.-C. Hung, C.-L. Yeh and C.-F. Lin, Morphology Dependence of Silicon Nanowire/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Heterojunction Solar Cells, Chem. Mater., 2010, 22, 3108.
57. L. Dai-Hong, S. Shu-Chia, H. Jing-Shun and L. Ching-Fuh, Effect of nanowire lengths on polymer-Si nanowire hybrid solar cells, 2010.
58. E. C. Garnett, C. Peters, M. Brongersma, Y. Cui and M. McGehee, Silicon nanowire hybrid photovoltaics, 2010.
59. L. He, Rusli, C. Jiang, H. Wang and D. Lai, Simple Approach of Fabricating High Efficiency Si Nanowire/Conductive Polymer Hybrid Solar Cells, Electron Device Letters, IEEE, 2011, 32, 1406.
60. L. Hu and G. Chen, Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications, Nano Lett., 2007, 7, 3249.
61. S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee and Y. Cui, Hybrid Silicon Nanocone–Polymer Solar Cells, Nano Lett., 2012, 12, 2971.
62. L. He, D. Lai, H. Wang, C. Jiang and Rusli, High-Efficiency Si/Polymer Hybrid Solar Cells Based on Synergistic Surface Texturing of Si Nanowires on Pyramids, Small, 2012, 8, 1664.
63. Q. Liu, M. Ono, Z. Tang, R. Ishikawa, K. Ueno and H. Shirai, Highly efficient crystalline silicon/Zonyl fluorosurfactant-treated organic heterojunction solar cells, Appl. Phys. Lett., 2012, 100.
64. L. Dong, Z. Yunfang, F. Xiao, Z. Fute, S. Tao and S. Baoquan, An 11%-Power-Conversion-Efficiency Organic-Inorganic Hybrid Solar Cell Achieved by Facile Organic Passivation, Electron Device Letters, IEEE, 2013, 34, 345.
65. T.-G. Chen, B.-Y. Huang, H.-W. Liu, Y.-Y. Huang, H.-T. Pan, H.-F. Meng and P. Yu, Flexible Silver Nanowire Meshes for High-Efficiency Microtextured Organic-Silicon Hybrid Photovoltaics, Acs Appl Mater Inter, 2012, 4, 6857.
66. M. Pietsch, S. Jäckle and S. Christiansen, Interface investigation of planar hybrid n-Si/PEDOT:PSS solar cells with open circuit voltages up to 645 mV and efficiencies of 12.6 %, Appl. Phys. A, 2014, 115, 1109.
67. D. B. Mitzi, Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials, John Wiley & Sons, Inc., 2007.
68. K. Tanaka, T. Takahashi, T. Kondo, K. Umeda, K. Ema, T. Umebayashi, K. Asai, K. Uchida and N. Miura, Electronic and Excitonic Structures of Inorganic–Organic Perovskite-Type Quantum-Well Crystal (C4H9NH3)2PbBr4, Jpn. J. Appl. Phys., 2005, 44, 5923.
69. B. O'Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353, 737.
70. B. E. Hardin, H. J. Snaith and M. D. McGehee, The renaissance of dye-sensitized solar cells, Nat. Photon., 2012, 6, 162.
71. H. J. Snaith and L. Schmidt-Mende, Advances in Liquid-Electrolyte and Solid-State Dye-Sensitized Solar Cells, Adv. Mater., 2007, 19, 3187.
72. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, JACS, 2009, 131, 6050.
73. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park and N.-G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, 2011, 3, 4088.
74. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Gratzel and N.-G. Park, Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Sci. Rep., 2012, 2.
75. L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin and M. Grätzel, Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells, JACS, 2012, 134, 17396.
76. J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith, Low-temperature processed meso-superstructured to thin-film perovskite solar cells, Energy Environ. Sci., 2013, 6, 1739.
77. M. Liu, M. B. Johnston and H. J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 2013, 501, 395.
78. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science, 2013, 342, 341.
79. J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen and T.-C. Wen, CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells, Adv. Mater., 2013, 25, 3727.
80. P. Peumans, A. Yakimov and S. R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, J. Appl. Phys., 2003, 93, 3693.
81. S. R. Forrest, The path to ubiquitous and low-cost organic electronic, Nature, 2004, 428, 911.
82. C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci and P. Denk, Effect of LiF/metal electrodes on the performance of plastic solar cells, Appl. Phys. Lett., 2002, 80, 1288.
83. H. Frohne, S. E. Shaheen, C. J. Brabec, D. C. Muller, N. S. Sariciftci and K. Meerholz, Influence of the Anodic Work Function on the Performance of Organic Solar Cells, ChemPhysChem, 2002, 3, 795.
84. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis and D. S. Ginley, Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer, Appl. Phys. Lett., 2006, 89, 143517.
85. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao and D. L. Kwong, An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO[sub 3] hole selective layer, Appl. Phys. Lett., 2008, 93, 221107.
86. F. Zhang, B. Sun, T. Song, X. Zhu and S. Lee, Air Stable, Efficient Hybrid Photovoltaic Devices Based on Poly(3-hexylthiophene) and Silicon Nanostructures, Chem. Mater., 2011, 23, 2084.
87. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency, Adv. Mater., 2006, 18, 789.
88. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T. Rispens, Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells, J. Appl. Phys., 2003, 94, 6849.
89. S. Gunes, H. Neugebauer and N. S. Sariciftci, Conjugated polymer-based organic solar cells, Chem. Rev., 2007, 107, 1324.
90. V. Mihailetchi, J. Wildeman and P. Blom, Space-Charge Limited Photocurrent, Phys. Rev. Lett., 2005, 94.
91. M. M. Mandoc, W. Veurman, L. J. A. Koster, B. de Boer and P. W. M. Blom, Origin of the Reduced Fill Factor and Photocurrent in MDMO-PPV:PCNEPV All-Polymer Solar Cells, Adv. Funct. Mater., 2007, 17, 2167.
92. S. R. Cowan, A. Roy and A. J. Heeger, Recombination in polymer-fullerene bulk heterojunction solar cells, Phys. Rev. B, 2010, 82.
93. R. Mauer, I. A. Howard and F. Laquai, Effect of Nongeminate Recombination on Fill Factor in Polythiophene/Methanofullerene Organic Solar Cells, The Journal of Physical Chemistry Letters, 2010, 1, 3500.
94. L. J. Koster, M. Kemerink, M. M. Wienk, K. Maturova and R. A. Janssen, Quantifying bimolecular recombination losses in organic bulk heterojunction solar cells, Adv. Mater., 2011, 23, 1670.
95. A. M. Goodman and A. Rose, Double Extraction of Uniformly Generated Electron‐Hole Pairs from Insulators with Noninjecting Contacts, J. Appl. Phys., 1971, 42, 2823.
96. L. J. A. Koster, V. D. Mihailetchi, R. Ramaker and P. W. M. Blom, Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells, Appl. Phys. Lett., 2005, 86, 123509.
97. S. R. Cowan, W. L. Leong, N. Banerji, G. Dennler and A. J. Heeger, Identifying a Threshold Impurity Level for Organic Solar Cells: Enhanced First-Order Recombination Via Well-Defined PC84BM Traps in Organic Bulk Heterojunction Solar Cells, Adv. Funct. Mater., 2011, 21, 3083.
98. C. G. Shuttle, R. Hamilton, B. C. O'Regan, J. Nelson and J. R. Durrant, Charge-density-based analysis of the current–voltage response of polythiophene/fullerene photovoltaic devices, Proc. Natl. Acad. Sci. USA, 2010, 107, 16448.
99. S. M. Sze and K. K. NG, Physical of semiconductor devices (3rd edition), John Wiley & Sons Incorporation, 2007.
100. A. Ibrahim, Analysis of Electrical Characteristics of Photovoltaic Single Crystal Silicon Solar Cells at Outdoor Measurements, Smart Grid and Renewable Energy, 2011, 02, 169.
101. A. K. Ghosh and T. Feng, Merocyanine organic solar cells, J. Appl. Phys., 1978, 49, 5982.
102. J. Xue, B. P. Rand, S. Uchida and S. R. Forrest, A Hybrid Planar-Mixed Molecular Heterojunction Photovoltaic Cell, Adv. Mater., 2005, 17, 66.
103. Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO Film as an electron transport layer, Adv. Mater., 2011, 23, 1679.
104. A. K. Kyaw, D. H. Wang, V. Gupta, J. Zhang, S. Chand, G. C. Bazan and A. J. Heeger, Efficient solution-processed small-molecule solar cells with inverted structure, Adv. Mater., 2013, 25, 2397.
105. H.-G. Jeon, M. Inoue, N. Hiramatsu, M. Ichikawa and Y. Taniguchi, A modified sublimation purification system using arrays of partitions, Org. Electron., 2008, 9, 903.
106. H.-G. Jeon, Y. Kondo, S. Maki, E. Matsumoto, Y. Taniguchi and M. Ichikawa, A highly efficient sublimation purification system using baffles with orifices, Org. Electron., 2010, 11, 794.
107. V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Accurate Measurement and Characterization of Organic Solar Cells, Adv. Funct. Mater., 2006, 16, 2016.
108. S. B. Darling, F. You, T. Veselka and A. Velosa, Assumptions and the levelized cost of energy for photovoltaics, Energy Environ. Sci., 2011, 4, 3133.
109. H.-L. Yip and A. K. Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells, Energy Environ. Sci., 2012, 5, 5994.
110. D. Yue, P. Khatav, F. You and S. B. Darling, Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics, Energy Environ. Sci., 2012, 5, 9163.
111. H. J. Son, B. Carsten, I. H. Jung and L. Yu, Overcoming efficiency challenges in organic solar cells: rational development of conjugated polymers, Energy Environ. Sci., 2012, 5, 8158.
112. H. J. Son, F. He, B. Carsten and L. Yu, Are we there yet? Design of better conjugated polymers for polymer solar cells, J. Mater. Chem., 2011, 21, 18934.
113. M. S. Su, C. Y. Kuo, M. C. Yuan, U. S. Jeng, C. J. Su and K. H. Wei, Improving device efficiency of polymer/fullerene bulk heterojunction solar cells through enhanced crystallinity and reduced grain boundaries induced by solvent additives, Adv. Mater., 2011, 23, 3315.
114. C. Duan, F. Huang and Y. Cao, Recent development of push–pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures, J. Mater. Chem., 2012, 22, 10416.
115. T. Y. Chu, J. Lu, S. Beaupre, Y. Zhang, J. R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding and Y. Tao, Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%, J. Am. Chem. Soc., 2011, 133, 4250.
116. Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su and Y. Cao, Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells, Adv. Mater., 2011, 23, 4636.
117. H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu and W. You, Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7 % efficiency, Angew. Chem. Int. Ed. Engl., 2011, 50, 2995.
118. J. M. Szarko, J. Guo, Y. Liang, B. Lee, B. S. Rolczynski, J. Strzalka, T. Xu, S. Loser, T. J. Marks, L. Yu and L. X. Chen, When function follows form: Effects of donor copolymer side chains on film morphology and BHJ solar cell performance, Adv. Mater., 2010, 22, 5468.
119. B. Walker, J. Liu, C. Kim, G. C. Welch, J. K. Park, J. Lin, P. Zalar, C. M. Proctor, J. H. Seo, G. C. Bazan and T.-Q. Nguyen, Optimization of energy levels by molecular design: evaluation of bis-diketopyrrolopyrrole molecular donor materials for bulk heterojunction solar cells, Energy Environ. Sci., 2013, 6, 952.
120. J. Zhou, X. Wan, Y. Liu, G. Long, F. Wang, Z. Li, Y. Zuo, C. Li and Y. Chen, A Planar Small Molecule with Dithienosilole Core for High Efficiency Solution-Processed Organic Photovoltaic Cells, Chem. Mater., 2011, 23, 4666.
121. Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan and A. a. J. Heeger, Solution-processed small-molecule solar cells with 6.7% efficiency, Nat. Mater., 2012, 11, 44.
122. T. S. van der Poll, J. A. Love, T. Q. Nguyen and G. C. Bazan, Non-basic high-performance molecules for solution-processed organic solar cells, Adv. Mater., 2012, 24, 3646.
123. J. Zhou, X. Wan, Y. Liu, Y. Zuo, Z. Li, G. He, G. Long, W. Ni, C. Li, X. Su and Y. Chen, Small molecules based on benzo[1,2-b:4,5-b']dithiophene unit for high-performance solution-processed organic solar cells, J. Am. Chem. Soc., 2012, 134, 16345.
124. V. Gupta, A. K. K. Kyaw, D. H. Wang, S. Chand, G. C. Bazan and A. J. Heeger, Barium: An Efficient Cathode Layer for Bulk-heterojunction Solar Cells, Sci. Rep., 2013, 3.
125. F. C. Spano and C. Silva, H- and J-Aggregate Behavior in Polymeric Semiconductors, Annu. Rev. Phys. Chem., 2014, 65, 477.
126. J. Zhou, X. Wan, Y. Liu, Y. Zuo, Z. Li, G. He, G. Long, W. Ni, C. Li, X. Su and Y. Chen, Small Molecules Based on Benzo[1,2-b:4,5-b′]dithiophene Unit for High-Performance Solution-Processed Organic Solar Cells, JACS, 2012, 134, 16345.
127. S. Avasthi, S. Lee, Y.-L. Loo and J. C. Sturm, Role of Majority and Minority Carrier Barriers Silicon/Organic Hybrid Heterojunction Solar Cells, Adv. Mater., 2011, 23, 5762.
128. L. He, C. Jiang, H. Wang, D. Lai and Rusli, High efficiency planar Si/organic heterojunction hybrid solar cells, Appl. Phys. Lett., 2012, 100.
129. I. Khatri, Z. Tang, Q. Liu, R. Ishikawa, K. Ueno and H. Shirai, Green-tea modified multiwalled carbon nanotubes for efficient poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate)/n-silicon hybrid solar cell, Appl. Phys. Lett., 2013, 102.
130. Y. Zhu, T. Song, F. Zhang, S.-T. Lee and B. Sun, Efficient organic-inorganic hybrid Schottky solar cell: The role of built-in potential, Appl. Phys. Lett., 2013, 102.
131. W.-R. Wei, M.-L. Tsai, S.-T. Ho, S.-H. Tai, C.-R. Ho, S.-H. Tsai, C.-W. Liu, R.-J. Chung and J.-H. He, Above-11%-Efficiency Organic–Inorganic Hybrid Solar Cells with Omnidirectional Harvesting Characteristics by Employing Hierarchical Photon-Trapping Structures, Nano Lett., 2013, 13, 3658.
132. G. Lucovsky, M. J. Mantini, J. K. Srivastava and E. A. Irene, Low‐temperature growth of silicon dioxide films: A study of chemical bonding by ellipsometry and infrared spectroscopy, Journal of Vacuum Science & Technology B, 1987, 5, 530.
133. E. A. Irene, Applications of spectroscopic ellipsometry to microelectronics, Thin Solid Films, 1993, 233, 96.
134. M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares and J. T. Koberstein, Conversion of Some Siloxane Polymers to Silicon Oxide by UV/Ozone Photochemical Processes, Chem. Mater., 2000, 12, 1591.
135. W. A. McGahan, B. Johs and J. A. Woollam, Techniques for ellipsometric measurement of the thickness and optical constants of thin absorbing films, Thin Solid Films, 1993, 234, 443.
136. B. C. O'Regan, S. Scully, A. C. Mayer, E. Palomares and J. Durrant, The Effect of Al2O3 Barrier Layers in TiO2/Dye/CuSCN Photovoltaic Cells Explored by Recombination and DOS Characterization Using Transient Photovoltage Measurements, The Journal of Physical Chemistry B, 2005, 109, 4616.
137. B. C. O'Regan, K. Bakker, J. Kroeze, H. Smit, P. Sommeling and J. R. Durrant, Measuring Charge Transport from Transient Photovoltage Rise Times. A New Tool To Investigate Electron Transport in Nanoparticle Films, The Journal of Physical Chemistry B, 2006, 110, 17155.
138. Z. Li, F. Gao, N. C. Greenham and C. R. McNeill, Comparison of the Operation of Polymer/Fullerene, Polymer/Polymer, and Polymer/Nanocrystal Solar Cells: A Transient Photocurrent and Photovoltage Study, Adv. Funct. Mater., 2011, 21, 1419.
139. A. Y. Anderson, P. R. F. Barnes, J. R. Durrant and B. C. O’Regan, Simultaneous Transient Absorption and Transient Electrical Measurements on Operating Dye-Sensitized Solar Cells: Elucidating the Intermediates in Iodide Oxidation, J. Phys. Chem. C, 2010, 114, 1953.
140. A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian and E. H. Sargent, Hybrid passivated colloidal quantum dot solids, Nat Nano, 2012, 7, 577.
141. D.-T. Nguyen, S. Vedraine, L. Cattin, P. Torchio, M. Morsli, F. Flory and J. C. Bernède, Effect of the thickness of the MoO3 layers on optical properties of MoO3/Ag/MoO3 multilayer structures, J. Appl. Phys., 2012, 112.
142. M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker and J. Stollenwerk, Dependence of film composition and thicknesses on optical and electrical properties of ITO–metal–ITO multilayers, Thin Solid Films, 1998, 326, 67.
143. M. Fahland, P. Karlsson and C. Charton, Low resisitivity transparent electrodes for displays on polymer substrates, Thin Solid Films, 2001, 392, 334.
144. D. R. Sahu, S.-Y. Lin and J.-L. Huang, Investigation of conductive and transparent Al-doped ZnO/Ag/Al-doped ZnO multilayer coatings by electron beam evaporation, Thin Solid Films, 2008, 516, 4728.
145. K.-H. Choi, H.-J. Nam, J.-A. Jeong, S.-W. Cho, H.-K. Kim, J.-W. Kang, D.-G. Kim and W.-J. Cho, Highly flexible and transparent InZnSnOx∕Ag∕InZnSnOx multilayer electrode for flexible organic light emitting diodes, Appl. Phys. Lett., 2008, 92.
146. X. Liu, X. Cai, J. Qiao, J. Mao and N. Jiang, The design of ZnS/Ag/ZnS transparent conductive multilayer films, Thin Solid Films, 2003, 441, 200.
147. C. Tao, G. Xie, L. Caixia, Z. Xindong, D. Wei, F. Meng, X. Kong, L. Shen, S. Ruan and W. Chen, Semitransparent inverted polymer solar cells with MoO3/Ag/MoO3 as transparent electrode, Appl. Phys. Lett., 2009, 95, 053303.
148. S. Schubert, J. Meiss, L. Müller-Meskamp and K. Leo, Improvement of Transparent Metal Top Electrodes for Organic Solar Cells by Introducing a High Surface Energy Seed Layer, Adv. Energy Mater., 2013, 3, 438.
149. A. K. Chu, J. S. Wang, Z. Y. Tsai and C. K. Lee, A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers, Sol. Energy Mater. Sol. Cells, 2009, 93, 1276.
150. I. Zubel and M. Kramkowska, The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions, Sensors and Actuators A: Physical, 2001, 93, 138.
151. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum and Y. M. Lam, The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells, Energy Environ. Sci., 2014, 7, 399.
152. P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon and H. J. Snaith, Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, Nat Commun, 2013, 4.
153. J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou and Y. Yang, Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility, ACS Nano, 2014, 8, 1674.
154. P.-W. Liang, C.-Y. Liao, C.-C. Chueh, F. Zuo, S. T. Williams, X.-K. Xin, J. Lin and A. K. Y. Jen, Additive Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells, Adv. Mater., 2014, 26, 3748.
155. J. Seo, S. Park, Y. Chan Kim, N. J. Jeon, J. H. Noh, S. C. Yoon and S. I. Seok, Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells, Energy Environ. Sci., 2014.
156. Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan and J. Huang, Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process, Energy Environ. Sci., 2014, 7, 2359.
157. D. Liu and T. L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, Nat. Photon., 2014, 8, 133.
158. D.-Y. Son, J.-H. Im, H.-S. Kim and N.-G. Park, 11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System, J. Phys. Chem. C, 2014.
159. J.-Y. Jeng, K.-C. Chen, T.-Y. Chiang, P.-Y. Lin, T.-D. Tsai, Y.-C. Chang, T.-F. Guo, P. Chen, T.-C. Wen and Y.-J. Hsu, Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar-Heterojunction Hybrid Solar Cells, Adv. Mater., 2014, 26, 4107.
160. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Science, 2012, 338, 643.
161. A. Abrusci, S. D. Stranks, P. Docampo, H.-L. Yip, A. K. Y. Jen and H. J. Snaith, High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers, Nano Lett., 2013, 13, 3124.
162. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar and T. C. Sum, Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3, Science, 2013, 342, 344.
163. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely and H. J. Snaith, Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells, Adv. Funct. Mater., 2014, 24, 151.
164. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 2013, 499, 316.
165. S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, G. Gigli, F. De Angelis and R. Mosca, MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties, Chem. Mater., 2013, 25, 4613.
166. C.-Y. Lin, Y.-C. Lin, W.-Y. Hung, K.-T. Wong, R. C. Kwong, S. C. Xia, Y.-H. Chen and C.-I. Wu, A thermally cured 9,9-diarylfluorene-based triaryldiamine polymer displaying high hole mobility and remarkable ambient stability, J. Mater. Chem., 2009, 19, 3618.
167. , http://www.sigmaaldrich.com/taiwan.html.
168. A. K. K. Kyaw, D. H. Wang, V. Gupta, J. Zhang, S. Chand, G. C. Bazan and A. J. Heeger, Efficient Solution-Processed Small-Molecule Solar Cells with Inverted Structure, Adv. Mater., 2013, 25, 2397.