簡易檢索 / 詳目顯示

研究生: 林威志
Lin, Wei-Chih
論文名稱: 雷射積層製造對析出強化型高熵合金微結構及性質之影響
Effects of selective laser melting process on the microstructure and property of a precipitation strengthened high entropy alloy
指導教授: 葉安洲
Yeh, An-Chou
口試委員: 林士剛
Lin, Shih-kang
蔡哲瑋
Tsai, Che-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 48
中文關鍵詞: 高熵合金雷射積層製造拉伸性質析出強化氧化物散布強化
外文關鍵詞: High entropy alloy, Selective laser melting, Tensile properties, Precipitation strengthening, Oxide dispersion strengthening
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對析出強化型高熵合金(Al0.2Co1.5CrFeNi1.5Ti0.3,Al02Ti03)透過雷射積層製造研究其微結構及機械性質,並且與鍛造製程下的Al02Ti03高熵合金以及雷射積層製造的傳統合金IN718進行微結構及機械性質比較。
    雷射積層製造Al02Ti03高熵合金在本實驗中具有極高的緻密度(>99.9%),此合金在室溫時比起鍛造製程Al02Ti03高熵合金降伏強度增加了285 MPa,比起雷射積層製造IN718 降伏強度增加了229 MPa,雷射積層製造Al02Ti03高熵合金在高溫下也展現較佳的機械性質,相對於鍛造製程Al02Ti03高熵合金及雷射積層製造IN718降伏強度分別增加了138MPa 及98MPa。
    透過分析各個強化機制以及進行微結構上的比較,發現由於雷射積層製造的快速冷卻特性,使雷射積層製造Al02Ti03高熵合金對比鍛造製程具有較小的晶粒,也由於此特性使Al02Ti03高熵合金具有較多的殘留應力存在其中。除了以上原因,由於Al02Ti03高熵合金成分中具有較高比例的鈦,使得在雷射積層製造的過程中,殘留在腔體中的氧氣被材料所吸收,形成奈米等級的鈦氧化物,這些氧化物均勻散佈在材料之中;此外,由於雷射積層製造中的微小偏析使材料在經過熱處理後生成不在平衡相圖下出現的L21相,這些奈米級顆粒也對材料進行強化,使雷射積層製造Al02Ti03高熵合金對比鍛造製程由更加的機械性質。
    而對比雷射積層製造IN718,雷射積層製造Al02Ti03高熵合金擁有較高比例的γ’ 析出相,同時IN718低鋁鈦含量的特性,使雷射積層製造IN718不具有奈米級氧化物,而以上原因使得雷射積層製造Al02Ti03高熵合金具有較佳的機械性質,同時因為雷射積層製造IN718不具有奈米級氧化物,這導致雷射積層製造IN718相對於雷射積層製造Al02Ti03高熵合金具有較高程度的晶界偏好方向。


    A precipitation strengthened high entropy alloy (HEA) - Al0.2Co1.5CrFeNi1.5Ti0.3 (Al02Ti03) was fabricated successfully with selective laser melting (SLM) method. Nano-sized titanium monoxide dispersion was observed after the SLM process. Formation of L12 and L21 particles occurred after direct ageing at 750 ℃ for 50 hours. The presence of L12 precipitates, L21 phase, nano oxide, and dislocation network provided superior tensile strength comparing to those of cast and wrought (C&W) sample and Inconel 718 processed by SLM. The yield strength of aged Al02Ti03 processed by SLM was 285 MPa and 229 MPa higher than those of C&W Al02Ti03 at room temperature and 500 ˚C, respectively. The yield strength of aged Al02Ti03 processed by SLM was 138 MPa and 98 MPa higher than that of IN718 processed by SLM at room temperature and 500 ˚C, respectively. This work demonstrates that SLM process can contribute additional strengthening factors associated with the high entropy composition.

    Table of Contents Abstract I 摘要 II 致謝 III Table of Contents IV List of Figures VI List of Tables IX 1 Introduction 1 2 Literature review 3 2.1. Introduction of High Entropy Alloys(HEA) 3 2.1.1. Definition and properties of high entropy alloys 3 2.1.2. Alloy of interest: Al0.2Co1.5CrFeNi1.5Ti0.3 (Al02Ti03) HEA 4 2.2. Recent research on HEA fabricated by SLM 6 2.3. Precipitation Strengthening 10 2.4. Internal Stress 13 2.5. Oxide Dispersion Strengthening 15 3 Materials and Methods 17 3.1. Experiment Procedure 17 3.2. Powders 18 3.3. Selective Laser Melting(SLM) 19 3.4. Heat Treatment 21 3.5. Optical Microscope(OM) 22 3.6. Scanning Electron Microscope(SEM) 22 3.7. Electron Back-Scattered Diffraction(EBSD) 22 3.8. X-ray Diffraction(XRD) 22 3.9. Transmission Electron Microscope(TEM) 22 3.10. Tensile Test 23 4 Result and Discussion 24 4.1. Microstructure Characterization 24 4.1.1. As-built microstructure 24 4.1.2. Heat-treated (HT) microstructure 28 4.2. Mechanical property 31 4.2.1. Tensile tests 31 4.2.2. Strengthening mechanisms 34 4.3. Comparison between DA-SLM and C&W Al02Ti03 HEA 37 4.4. Comparison between DA-SLM Al02Ti03 HEA and HT-SLM IN718 40 5 Conclusion 43 6 Reference 44

    6 Reference
    [1] D. Karlsson, A. Marshal, F. Johansson, M. Schuisky, M. Sahlberg, J.M. Schneider, U. Jansson, Elemental segregation in an AlCoCrFeNi high-entropy alloy–a comparison between selective laser melting and induction melting, Journal of Alloys and Compounds 784 (2019) 195-203.
    [2] W.E. Frazier, Metal Additive Manufacturing: A Review, Journal of Materials Engineering and Performance 23(6) (2014) 1917-1928.
    [3] E.O. Olakanmi, Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: Effect of processing conditions and powder properties, Journal of Materials Processing Technology 213(8) (2013) 1387-1405.
    [4] R. Casati, J.N. Lemke, A.Z. Alarcon, M. Vedani, Aging Behavior of High-Strength Al Alloy 2618 Produced by Selective Laser Melting, Metallurgical and Materials Transactions A 48(2) (2017) 575-579.
    [5] W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, M. Qian, Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition, Acta Materialia 85 (2015) 74-84.
    [6] X. Zhao, S. Li, M. Zhang, Y. Liu, T.B. Sercombe, S. Wang, Y. Hao, R. Yang, L.E. Murr, Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting, Materials & Design 95 (2016) 21-31.
    [7] Y.J. Yin, J.Q. Sun, J. Guo, X.F. Kan, D.C. Yang, Mechanism of high yield strength and yield ratio of 316 L stainless steel by additive manufacturing, Materials Science and Engineering: A 744 (2019) 773-777.
    [8] E. Liverani, S. Toschi, L. Ceschini, A. Fortunato, Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel, Journal of Materials Processing Technology 249 (2017) 255-263.
    [9] J. Strößner, M. Terock, U. Glatzel, Mechanical and Microstructural Investigation of Nickel-Based Superalloy IN718 Manufactured by Selective Laser Melting (SLM), Advanced Engineering Materials 17(8) (2015) 1099-1105.
    [10] D. Bürger, A.B. Parsa, M. Ramsperger, C. Körner, G. Eggeler, Creep properties of single crystal Ni-base superalloys (SX): A comparison between conventionally cast and additive manufactured CMSX-4 materials, Materials Science and Engineering: A 762 (2019) 138098.
    [11] M.-H. Tsai, J.-W. Yeh, High-Entropy Alloys: A Critical Review, Materials Research Letters 2(3) (2014) 107-123.
    [12] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122 (2017) 448-511.
    [13] J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Materialia 102 (2016) 187-196.
    [14] Y.-J. Chang, A.-C. Yeh, The evolution of microstructures and high temperature properties of AlxCo1. 5CrFeNi1. 5Tiy high entropy alloys, Journal of Alloys and Compounds 653 (2015) 379-385.
    [15] J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu, A review on fundamental of high entropy alloys with promising high–temperature properties, Journal of Alloys and Compounds 760 (2018) 15-30.
    [16] C.-C. Juan, M.-H. Tsai, C.-W. Tsai, C.-M. Lin, W.-R. Wang, C.-C. Yang, S.-K. Chen, S.-J. Lin, J.-W. Yeh, Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys, Intermetallics 62 (2015) 76-83.
    [17] J. Joseph, N. Haghdadi, K. Shamlaye, P. Hodgson, M. Barnett, D. Fabijanic, The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures, Wear 428-429 (2019) 32-44.
    [18] I.T. Ho, Y.-T. Chen, A.-C. Yeh, C.-P. Chen, K.-K. Jen, Microstructure evolution induced by inoculants during the selective laser melting of IN718, Additive Manufacturing 21 (2018) 465-471.
    [19] J. Li, Z. Zhao, P. Bai, H. Qu, B. Liu, L. Li, L. Wu, R. Guan, H. Liu, Z. Guo, Microstructural evolution and mechanical properties of IN718 alloy fabricated by selective laser melting following different heat treatments, Journal of Alloys and Compounds 772 (2019) 861-870.
    [20] M.D. Sangid, T.A. Book, D. Naragani, J. Rotella, P. Ravi, A. Finch, P. Kenesei, J.-S. Park, H. Sharma, J. Almer, X. Xiao, Role of heat treatment and build orientation in the microstructure sensitive deformation characteristics of IN718 produced via SLM additive manufacturing, Additive Manufacturing 22 (2018) 479-496.
    [21] L. Huynh, J. Rotella, M.D. Sangid, Fatigue behavior of IN718 microtrusses produced via additive manufacturing, Materials & Design 105 (2016) 278-289.
    [22] X. Li, Q. Li, T. Wang, J. Zhang, Hydrogen-assisted failure of laser melting additive manufactured IN718 superalloy, Corrosion Science 160 (2019) 108171.
    [23] R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, K. Zhou, Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property, Journal of Alloys and Compounds 746 (2018) 125-134.
    [24] A. Piglione, B. Dovgyy, C. Liu, C. Gourlay, P. Hooper, M. Pham, Printability and microstructure of the CoCrFeMnNi high-entropy alloy fabricated by laser powder bed fusion, Materials Letters 224 (2018) 22-25.
    [25] Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, J. Wei, Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting, Scripta Materialia 154 (2018) 20-24.
    [26] P. Niu, R. Li, T. Yuan, S. Zhu, C. Chen, M. Wang, L. Huang, Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting, Intermetallics 104 (2019) 24-32.
    [27] Y. Chew, G. Bi, Z. Zhu, F. Ng, F. Weng, S. Liu, S. Nai, B. Lee, Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy, Materials Science and Engineering: A 744 (2019) 137-144.
    [28] L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.-L. Chiu, J. Li, Z. Zhang, Q. Yu, Z. Shen, Dislocation network in additive manufactured steel breaks strength–ductility trade-off, Materials Today 21(4) (2018) 354-361.
    [29] T. Boegelein, S.N. Dryepondt, A. Pandey, K. Dawson, G.J. Tatlock, Mechanical response and deformation mechanisms of ferritic oxide dispersion strengthened steel structures produced by selective laser melting, Acta Materialia 87 (2015) 201-215.
    [30] Y.-K. Kim, J. Choe, K.-A. Lee, Selective laser melted equiatomic CoCrFeMnNi high-entropy alloy: Microstructure, anisotropic mechanical response, and multiple strengthening mechanism, Journal of Alloys and Compounds 805 (2019) 680-691.
    [31] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced Engineering Materials 6(5) (2004) 299-303.
    [32] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A 375-377 (2004) 213-218.
    [33] M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang, High-entropy alloys: fundamentals and applications, Springer2016.
    [34] H. Daoud, A. Manzoni, N. Wanderka, U. Glatzel, High-temperature tensile strength of Al 10 Co 25 Cr 8 Fe 15 Ni 36 Ti 6 compositionally complex alloy (high-entropy alloy), JOM 67(10) (2015) 2271-2277.
    [35] T.-K. Tsao, A.-C. Yeh, C.-M. Kuo, K. Kakehi, H. Murakami, J.-W. Yeh, S.-R. Jian, The high temperature tensile and creep behaviors of high entropy superalloy, Scientific reports 7(1) (2017) 12658.
    [36] B. Gwalani, V. Soni, O.A. Waseem, S.A. Mantri, R. Banerjee, Laser additive manufacturing of compositionally graded AlCrFeMoVx (x = 0 to 1) high-entropy alloy system, Optics & Laser Technology 113 (2019) 330-337.
    [37] M. Dadé, J. Malaplate, J. Garnier, F. De Geuser, F. Barcelo, P. Wident, A. Deschamps, Influence of microstructural parameters on the mechanical properties of oxide dispersion strengthened Fe-14Cr steels, Acta Materialia 127 (2017) 165-177.
    [38] T.-H. Hsu, Y.-J. Chang, C.-Y. Huang, H.-W. Yen, C.-P. Chen, K.-K. Jen, A.-C. Yeh, Microstructure and property of a selective laser melting process induced oxide dispersion strengthened 17-4 PH stainless steel, Journal of Alloys and Compounds 803 (2019) 30-41.
    [39] R. Zhou, Y. Liu, C. Zhou, S. Li, W. Wu, M. Song, B. Liu, X. Liang, P.K. Liaw, Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting, Intermetallics 94 (2018) 165-171.
    [40] R.C. Reed, The superalloys: fundamentals and applications, Cambridge university press2008.
    [41] A. Yeh, T. Tsao, Y. Chang, K. Chang, J. Yeh, M. Chiou, S. Jian, C. Kuo, W. Wang, H. Murakami, Developing new type of high temperature alloys–High Entropy Superalloys, International Journal of Metallurgical & Materials Engineering 2015 (2015).
    [42] B. Reppich, Some new aspects concerning particle hardening mechanisms in γ' precipitating Ni-base alloys—I. Theoretical concept, Acta Metallurgica 30(1) (1982) 87-94.
    [43] E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, J. Telesman, Superalloys 2012, John Wiley & Sons2012.
    [44] D.J. Crudden, A. Mottura, N. Warnken, B. Raeisinia, R.C. Reed, Modelling of the influence of alloy composition on flow stress in high-strength nickel-based superalloys, Acta Materialia 75 (2014) 356-370.
    [45] J.M. Park, J. Choe, J.G. Kim, J.W. Bae, J. Moon, S. Yang, K.T. Kim, J.-H. Yu, H.S. Kim, Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting, Materials Research Letters 8(1) (2020) 1-7.
    [46] P. Mercelis, J.-P. Kruth, Residual stresses in selective laser sintering and selective laser melting, Rapid prototyping journal 12(5) (2006) 254-265.
    [47] G.I. Taylor, The mechanism of plastic deformation of crystals. Part I.—Theoretical, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 145(855) (1934) 362-387.
    [48] M.R. Staker, D.L. Holt, The dislocation cell size and dislocation density in copper deformed at temperatures between 25 and 700°C, Acta Metallurgica 20(4) (1972) 569-579.
    [49] U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Progress in Materials Science 48(3) (2003) 171-273.
    [50] E. Göttler, Versetzungsstruktur und verfestigung von [100]-kupfereinkristallen, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 28(5) (1973) 1057-1076.
    [51] W. Wu, R. Zhou, B. Wei, S. Ni, Y. Liu, M. Song, Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting, Materials Characterization 144 (2018) 605-610.
    [52] M.A. Miodownik, J.W. Martin, E.A. Little, Secondary recrystallisation of two oxide dispersion strengthened ferritic superalloys: MA 956 and MA 957, Materials Science and Technology 10(2) (1994) 102-109.
    [53] C. Capdevila, Y.L. Chen, N.C.K. Lassen, A.R. Jones, H.K.D.H. Bhadeshia, Heterogeneous deformation and recrystallisation of iron base oxide dispersion strengthened PM2000 alloy, Materials Science and Technology 17(6) (2001) 693-699.
    [54] Y. Zhong, L. Liu, S. Wikman, D. Cui, Z. Shen, Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting, Journal of Nuclear Materials 470 (2016) 170-178.
    [55] Y. Zhong, L. Liu, J. Zou, X. Li, D. Cui, Z. Shen, Oxide dispersion strengthened stainless steel 316L with superior strength and ductility by selective laser melting, Journal of Materials Science & Technology (2019).
    [56] J.W. Martin, Micromechanisms in particle-hardened alloys, CUP Archive1980.
    [57] R.E. Smallman, A.H.W. Ngan, Chapter 13 - Precipitation Hardening, in: R.E. Smallman, A.H.W. Ngan (Eds.), Modern Physical Metallurgy (Eighth Edition), Butterworth-Heinemann, Oxford, 2014, pp. 499-527.
    [58] H. Iwasaki, N.F.H. Bright, The stability of the polymorphs of titanium monoxide, Journal of the Less Common Metals 21(4) (1970) 353-363.
    [59] E. Wiberg, N. Wiberg, A.F. Holleman, Inorganic chemistry, Academic Press ; De Gruyter, San Diego; Berlin; New York, 2001.
    [60] T.H. Courtney, Mechanical behavior of materials, Waveland Press2005.
    [61] W. KÖSter, H. Franz, POISSON'S RATIO FOR METALS AND ALLOYS, Metallurgical Reviews 6(1) (1961) 1-56.
    [62] K.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, Encyclopedia of materials, Science and technology 1 (2001) 11.

    QR CODE