簡易檢索 / 詳目顯示

研究生: 黃俊源
Chuen-Uan Huang
論文名稱: 微機電單極天線
Micromachined Monopole Antenna
指導教授: 黃瑞星
Star Ruey-Shing Huang
周復芳
Christina F. Jou
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2005
畢業學年度: 94
語文別: 英文
論文頁數: 102
中文關鍵詞: 微機電技術單極天線電鍍
外文關鍵詞: MEMS, monopole antenna, electroplating
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文描述了低成本輕巧的單極天線之研究成果,包含兩種微機電單極天線的設計、製作與性能的量測結果。其中一種是製作於parylene薄膜上之可撓性單極天線,另一種是製作於Pyrex 7740玻璃基板兩側之三維立體單極天線。
    可撓性雙頻單極天線被設計成曲折狀的金屬線,因此可縮小天線之物理尺寸並同時維持其電性長度。因parylene之低介電常數、高電阻係數與化性安定等等之優點,本實驗採用parylene薄膜做為天線之基板。根據實驗與量測結果,此天線具有小尺寸、重量輕、具可撓性、低成本、雙頻特性與寬頻等等優點。
    小型的微機電立體單極天線亦成功地 被設計與製作出來,以適用於無線區域網路(802.11b)之應用。為了縮小尺寸,此天線製作在Pyrex 7740玻璃基板之兩側,兩側之金屬線以電鍍銅連接孔連結。由量測結果可發現,此天線之操作頻率為2.45GHz並具有190MHz之頻寬,此外,量測結果與模擬結果有相當程度之吻合。此小尺寸、低成本與容易製作之立體天線亦適合於無線通訊系統之應用。


    This dissertation reports the design and fabrication of two kinds of micromachined monopole antennas; one is a flexible monopole antenna which was fabricated on parylene substrate, and the other is a 3D monopole antenna which was fabricated on both sides of a Pyrex 7740 glass wafer with through-hole connections.
    Flexible dual-band monopole antennas were designed with meander-shaped metal tracks, because this can efficiently reduce the physical dimensions of the overall antenna size and maintaining the required electrical path-length. Due to parylene’s excellent physical, mechanical and chemical properties such as low dielectric constant, high resistivity, and inertness to chemicals, it can serve as a substrate for an antenna in our study. The advantages of these antennas are their small size, light weight, low cost, dual-band characteristics, broad bandwidth, and flexible.
    A compact three dimensional MEMS monopole antenna for WLAN (802.11b) was also designed, fabricated, and measured. In order to reduce the size, the meandered monopole antenna was fabricated on both sides of a Pyrex 7740 glass wafer, and the metal lines on both sides were connected through via-holes. Measured performances of the fabricated 3-D antenna are in good agreement to the designed values in terms of operating frequency at 2.45 GHz and with a bandwidth of 190 MHz. This simple fabricated small size low cost antenna is suitable for mobile communication systems applications.

    Chapter 1 Introduction 1 1-1 Motivation 1 1-2 Review of MEMS Antennas 2 1-3 Organization of This Dissertation 5 Chapter 2 Micromachining and Monopole Antenna 13 2-1 MEMS Technology 13 2-1.1 Surface Micromachining 14 2-1.2 Bulk Micromachining 15 2-1.3 LIGA 16 2-2 Basic Antenna Theory 17 2-2.1 Dipole Antenna 18 2-2.2 Image Theory 21 2-2.3 Monopole Antenna 22 2-2.4 Meandered Structure 22 Chapter 3 Flexible Monopole Antenna 35 3-1 Introduction 35 3-2 Design and Fabrication 37 3-2.1 Antenna Design 37 3-2.2 Parylene Deposition 38 3-2.3 Fabrication processes 39 3-3 Results and Discussion 40 3-3.1 Return loss of dual-band monopole antenna 40 3-3.2 Antenna radiation characteristics 41 3-4 Another Design of the Dual-band Monopole Antenna 42 3-5 Conclusions 43 Chapter 4 3-D Monopole Antenna 63 1 Introduction 63 2 Design and fabrication 65 2.1 Antenna design 65 2.2 Antenna fabrication 67 3 Results and discussion 69 3.1 Return loss of the 3D monopole antenna 69 3.2 Antenna radiation characteristics 70 4 Conclusions 71 Chapter 5 Conclusion and Future Works 85 5-1 Conclusion 85 5-2 Future Works 86 Appendix A Silicon-Based 3-D Monopole Antenna -1- A-1 Dimensions of the antenna -1- A-2 Fabrication process -1- A-3 Results -2- Appendix B Fabrication of Lateral Micro Switch/Relay -1- B-1 Introduction -1- B-2 Experimental -2- B-3 Results and Discussions -3-

    References:

    [1] C. T.-C. Nguyen: Micromechanical components for miniaturized low-power communications, Proceedings, 1999 IEEE MTT-S International Microwave Symposium RF MEMS Workshop June 18, 1999, pp. 48-77.

    [2] J Jason Yao: RF MEMS from a device perspective, J. Micromech. Microeng. 10, 2000, pp. R9 - R38.

    [3] Linda P.B. Katehi, James F. Harvey and Katherine J. Herrick: 3-D Integration of RF Circuits Using Si Micromachining, Microwave Magazine, IEEE Volume 2, Issue 1, March 2001, pp. 30 – 3.

    [4] Harrie A. C. Tilmans, Walter De Raedt and Eric Beyne: MEMS for wireless communications: ‘from RF-MEMS components to RF-MEMS-SiP’ J. Micromech. Microeng., 13 (2003), pp. S139–S163.

    [5] Héctor J. De Los Santos, Georg Fischer, Harrie A.C. Tilmans, and Joost T.M. van Beek: RF MEMS for Ubiquitous Wireless Connectivity: Part-1 Fabrication, IEEE Microwave Magazine, Volume 5, Issue 4, Dec. 2004, pp. 36 – 49.

    [6] Héctor J. De Los Santos, Georg Fischer, Harrie A.C. Tilmans, and Joost T.M. van Beek: RF MEMS for Ubiquitous Wireless Connectivity: Part-2 Application, IEEE Microwave Magazine, Volume 5, Issue 4, Dec. 2004, pp. 50 – 65.

    [7] Esashi, M.: MEMS technology: optical application, medical application and SOC application, Symposium on VLSI Technology, 2002. Digest of Technical Papers, 11-13 June 2002, pp. 6 – 9.

    [8] Chowdhury, S.; Ahmadi, M.; Miller, W.C.: Microelectromechanical systems and system-on-chip connectivity, IEEE Circuits and Systems Magazine, Volume 2, Issue 2, 2002, pp. 4 – 28.

    [9] Chen, H.J.H.; Chuen-Uan Huang; Kuo Yu Tseng; Hsu Chun Chen; Wang, S.S., Huang, S.R.S.: A novel technique for integrated RF-MEMS system-on-chip, Proceedings of IEEE Sensors, Vol. 2, 24-27 Oct. 2004, pp. 615 – 618.

    [10] Santos, Hector J. de los.: RF MEMS circuit design for wireless communications, Boston, MA : Artech House, 2002.

    [11] Vijay K. Varadan, K. J. Vinoy, and K.A. Jose.: RF MEMS and their applications, New York: J. Wiley, 2003.

    [12] Gabriel M. Rebeiz: RF MEMS: theory, design, and technology, Hoboken, N.J.: Wiley-Interscience, 2003.

    [13] I. Papapolymerou, R.F. Drayton and L.P.B. Katehi, ‘Micromachined patch antennas’, IEEE Transactions on Antennas and Propagation, 46, 1998, pp. 275–283.

    [14] Q. Chen, V.F. Fusco, M. Zheng and P.S. Hall, ‘Micromachined silicon antennas’, Proceedings of the International Conference on Microwave and Millimeter Wave Technology, IEEE, Washington, DC, 18-20, Aug. 1998, pp. 289 – 292.

    [15] J.W. Yook, L.P.B. Katehi, ‘Micromachined microstrip patch antenna with controlled mutual coupling and surface waves’, IEEE Transactions on Antennas and Propagation, vol. 49, 2001, pp. 1282–1289.

    [16] Gauthier, G.P., Raskin, J.P., Katehi, L.P.B., Rebeiz, G.M., ‘A 94-GHz aperture-coupled micromachined microstrip antenna’, IEEE Transactions on Antennas and Propagation, vol. 47, 1999, pp. 1761–1766.

    [17] G. P. Gauthier, A. Courtay, and G. M. Rebeiz, “Microstrip antennas on synthesized low dielectric-constant substrates,” IEEE Trans. Antennas Propagat., vol. 45, Aug. 1997, pp. 1310–1314.

    [18] Shenouda, B.A., Pearson, L.W., Harriss, J.E., ‘Etched-silicon micromachined W-band waveguides and horn antennas’, IEEE Transactions on Microwave Theory and Techniques, vol. 49, 2001, pp. 724–727.

    [19] S.G. Gearhart and T. Willke, ‘Integrated antennas and filters fabricated using micromachining techniques’, in IEEE Aerospace Applications Conference Proceedings, Volume 3, March, 1998, pp. 21–28.

    [20] D. Chauvel, N. Haese, P.-A. Rolland, D. Collard and H. Fujita, “A micromachined microwave antenna integrated with its electrostatic spatial scanning”, in IEEE Microelectromechanical Systems Conference Proceedings, Washington, 1997, pp. 84-87.

    [21] J.C. Chiao, Y. Fu, I.M. Chio, M. DeLisio and L.-Y. Lin, ‘MEMS reconfigurable Vee antenna’, in IEEE Microwave Theory and Techniques Symposium, Digest, Washington, 1999, pp. 1515–1518.

    [22] Hamid Jafarkhani, Jiang-Yuan Qian, Hui Jae Yoo, Alfred Grau, and Franco De Flaviis “Multifunctional Reconfigurable MEMS Integrated Antennas for Adaptive MIMO Systems,” IEEE Communications Magazine, December 2004, pp. 62-70.

    [23] Sinan ONAT, Lale ALATAN, Simsek DEMIR “Design of Triple-Band Reconngurable Microstrip Antenna Employing RF-MEMS Switches,” Antennas and Propagation Society International Symposium, 2004. IEEE Volume 2, 20-25, June 2004, pp. 1812 – 1815.

    [24] Sabet, K.F.; Katehi, L.P.B.; Sarabandi, K. “Modeling and design of mems-based reconfligurable antenna arrays,” Aerospace Conference, 2003, Proceedings of the IEEE, Volume 2, March 8-15, 2003, pp. 2_1135 - 2_1141.

    [25] Kiriazi, J.; Ghali, H.; Ragaie, H.; Haddara, H. “Reconfigurable dual-band dipole antenna on silicon using series MEMS switches,” Antennas and Propagation Society International Symposium, 2003. IEEE Volume 1, 22-27 June 2003, pp. 403 – 406.

    [26] Feynman, R. P., “There’s Plenty of Room at the Bottom,” Journal of Microelectromechanical Systems, Vol. 1, No. 1, 1992, pp. 60–66.

    [27] Andreas Hierlemann, Oliver Brand, Christoph Hagleitner, and Henry Bltes: Microfabrication Techniques for Chemical/Biosensors, Proceedings of the IEEE, Volume 91, Issue 6, June 2003, pp. 839 – 863.

    [28] Michael Pottenger, Beverley Eyre, Ezekiel Kruglick and Gisela Lin: MEMS: The Maturing of a New technology, Solid State Technology, Sept. 1997, pp. 89-86.

    [29] Nadim Maluf and Kirt Williams: An Introduction to Microelectromechanical Systems Engineering, Second Edition, Artech House, Inc., Boston • London, 2004.

    [30] S.M. Sze: Semiconductor Sensors, Wiley. 1994.

    [31] Marc Madou: Fundamentals of Microfabrication, CRC Press, 1997.

    [32] P. J. French and P. M. Sarro: “Surface versus bulk micromachining: the contest for suitable applications”, J. Micromech. Microeng., 8, 1998, pp. 45-53.

    [33] C. Linder, L. Paratte, M.-A. Gratillat, V. P. Jaeklin and N. F. De Rooij: “Review Surface micromachining”, J. Micromech. Microeng., 2, 1992, pp. 122-132.

    [34] P. J. French: “Topic Review Development of Surface Micromachining Techniques Compatible with On-Chip Electronics”, J. Micromech. Microeng., 6, 1996, pp. 376-384.

    [35] Gregory T. A. Kovacs, Nadim I. Maluf and Kurt E. Petersen: “Bulk Micromachining of Silicon”, Proceedings of the IEEE, Volume 86, Issue 8, Aug. 1998, pp. 1536 – 1551.

    [36] JackW Judy: “Microelectromechanical systems (MEMS): fabrication, design and applications”, Smart Mater. Struct. 10 (2001), pp. 1115–1134.

    [37] Ehrfeld W et al 1987 “Fabrication of microstructures using the LIGA process”, Proc. IEEE Micro Robots Teleoperators Workshop (1987), Nov. 9-11, Hyannis, Cape cod, MA, USA.

    [38] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, John Wiley & Sons, New York, Chapter 2, 1998.

    [39] Balanis, Antenna Theory Analysis and Design, John Wiley & Sons, New York, Chapter 4, 1997.

    [40] Lal Chand Godara, Handbook of Antenna in Wireless Communications, Boca Raton London New York Washington, DC, 2002, pp.12-8 - 12-40.

    [41] M.Ali,S. S. Stuchly, and K. Caputa, “A wide-band dual meander-sleeve antenna”, J. Electromagnet., Waves and Appl., Vol. 10, No. 9, 1996, pp.1223-1236.

    [42] H. Nakano, H. Tagami, A. Yoshizawa, and J. Yamauchi, “Shortening ratio of modified dipole antennas”, IEEE Trans. Antennas Propag, vol. AP-32, no.4, April, 1984, pp. 385-386,

    [43] H.Y. Wang and M. J. Lancaster, “Aperture-coupled thin-film superconducting meander line antennas”, IEEE Trans. Antennas Propag, vol. 47, no.5, May 1999, pp. 829-836.

    [44] Rhonda F. drayton, et al, “ Microstrip Patch Antennas on Micromachined Low-Index Materials,” IEEE Antennas and Propagation Society International Symposium, 1995, AP-S. Digest, volume: 2, 18-23, June 1995, pp. 1220-1223.

    [45] J.-C. Chiao, “MEMS RF Devices For Antenna Applications”, IEEE Microwave Conf., 2000 Asia-Pacific, 3-6, Dec. 2000, pp. 895-898.

    [46] Chang-Wook Baek, and Seunghyun Song et al, “2-D Mechanical Beam Steering Antenna Fabricated Using MEMS technology,” IEEE MTT-S Digest, 2001, pp.211-214.

    [47] X. Q. Wang, Q. Lin, and Y. c. Tai, “A Parylene Micro check Valve,” Proceedings of the 12th IEEE Internal Conference on Micro Electro Mechanical Systems (MEMS’99), Florida, U.S.A, Jan. 17-21, 1999, pp.177-182.

    [48] Pornsin-Sirirak, et al., “Flexible parylene-valved skin for adaptive flow control.” Micro Electro Mechanical Systems, 2002. The Fifteenth IEEE International Conference on, 20-24 Jan. 2002, pp. 101 – 104.

    [49] Ellis Meng; Yu-Chong Tai; “A parylene mems flow sensing array.” TRANSDUCERS 2003, 12th International Conference on Solid-State Sensors, Actuators and Microsystems, 2003, Volume: 1, pp. 686 – 689.

    [50] C.-U. Huang, I-Y. Chen, H. J. H. Chen, C. F. Jou and S. R.-S. Huang, “High Performance Low Cost Patch Antenna Fabricated on Silicon Suspended Parylene Membrane”, ICEE 2004/APCOT MNT, Asia-Pacific Conf. Transducers and Micro-Nano Technology, 2004, Vol. 3-2, pp. 1003.

    [51] Webpage: http://www.vp-scientific.com/index.htm

    [52]) Webpage: http://paratronix.com/apps/techdata.asp

    [53] T. H. Kim and D. C. Park, “CPW-fed compact monopole antenna for dual-band WLAN applications”, Electronics Letters, Volume 41, Issue 6, 17 March 2005, pp. 291 - 293.

    [54] IE3D, Zeland Software, Inc.

    [55] L. Wang et al, “High aspect ratio through-wafer interconnections for 3D-microsystems”, IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto, 19-23 Jan. 2003, pp. 634 – 637.

    [56] Manabu Tomisaka et al, “Electroplating Cu filling for through-vias for three-dimensional chip stacking”, IEEE Electronic Components and Technology Conference, 2002. Proceedings, 52nd 28-31 May 2002, pp. 1432 – 1438.

    [57] Pham N P et al, “A micromachining post-process module for RF silicon technology”, IEDM Technical Digest, 2000, pp. 481-484.

    [58] Takeshi Kobayashi et al, “Via-filling using electroplating for build up PCBs”, Electrochimica Acta, 47 (2001), pp. 85-89.

    [59] Vaughn N. Johnson et al, “Through wafer interconnects on active pMOS devices”, IEEE Workshop on Microelectronics and Electron Devices, 2004, pp.82 – 84.

    [60] Xinghua Li et al, “Fabrication of high-density electrical feed-through by deep-reactive-ion etching of Pyrex glass”, IEEE J. Microelectromechanical systems Vol. 11 No. 6 Dec. 2002, pp 625-630.

    [61] N T Nguyen et al, “Through-wafer copper electroplating for three-dimensional interconnects”, J. Micromech. Microeng. 12 (2002), pp. 395-399.

    [62] Eugene M. chow et al, “Process compatible polysilicon-based electrical through-wafer interconnects in silicon substrates”, IEEE J. Microelectromechanical Systems Vol. 11 No. 6 Dec. 2002, pp. 631-640.

    [63] W.-C. Liu, “Broadband dual-frequency meandered CPW-fed monopole antenna”, Electron. Lett., 14Th Oct. 2004 Vol. 40 No. 21, pp. 1319 – 1320.

    [64] J. Guterman et al, “Dual-band miniaturized microstrip fractal antenna for a small GSM 1800 + UMTS mobile handset”, IEEE MELECOM 2004, May 12-15 2004, pp. 499-501.

    [65] Rebekka Porath, “Theory of miniaturized shorting-post microstrip antenna”, IEEE Trans. Antennas Propag. Vol. 48 No. 1, Jan. 2000, pp. 41-47.

    [66] Cetiner, B.A. et al, “Monolithic integration of RF MEMS switches with a diversity antenna on PCB substrate”, IEEE Trans. Microwave Theory and Tech. Vol. 51 Issue 1, Jan. 2003, pp 332 – 335.

    [67] Chien-Jen Wang et al, “Small microstrip helical antenna”, IEEE 1999 Asia Pacific Microwave Conference Vol. 2 1999, pp 367 – 370.

    [68] Fa-Shian Cheng et al, “Folded meandered-patch monopole antenna for triple-band operation”, IEEE Antennas and Propagation Society International Symposium, Volume 1, 22-27 June 2003, pp. 278 – 281.

    [69] Rockwood Electrochemicals Asia Ltd, Taiwan, R.O.C.

    [70] Mark Lefebvre et al, “Copper electroplating technology for microvia filling”, Circuit World 2003 Vol. 29 No. 2, pp. 9 – 14.

    [71] Cheng-Ching Yeh et al, “Micro via filling plating technology for IC substrate applications”, Circuit Word 2004 Vol. 30 No. 3, pp. 26 – 32.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE