簡易檢索 / 詳目顯示

研究生: 陳順林
Chen, Soon-Lin
論文名稱: 微型甲醇燃料電池之陽極微氣泡觀測與電催化測試研究
Observation of Micro Bubbles and Electrocatalytic Test Research of Anode for Micro DMFC
指導教授: 曾繁根
Tseng, Fan-Gang
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 104
中文關鍵詞: 直接甲醇燃料電池奈米碳管二氧化碳微氣泡
外文關鍵詞: direct methanol fuel cell, carbon nanotubes, carbon dioxide microbubbles
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要著重在微型甲醇燃料電池陽極甲醇電催化測試和微氣泡的觀測及分析。我們可以由兩個部份來討論此一議題。第一部份係針對不同觸媒基材載體電極進行CO2微氣泡觀測同步量測電化學訊號的實驗;第二部份為在數種不同型態直徑80μm的白金薄膜上利用CCD攝影機及高速攝影機去觀測O2微氣泡的生長和脫離現象。
    第一部份可以得到的結論為若電極以奈米碳管(CNTs)作為觸媒支撐層可以直接減少電化學觸媒反應中二氧化碳(CO2)氣泡在觸媒表面的累積,導致可以增進二氧化碳(CO2)氣泡移除的能力。同時由光學系統觀察到的較高氣泡脫離率和較小的氣泡脫離尺寸與電化學系統中較高的電流振動頻率間有很高的一致性。這些結果提供了有奈米結構的電極對包含了液體反應物和氣體產物之電化學反應的質傳有所貢獻的直接證據。Pt/CNTs/CC電極的二氧化碳氣泡表面的未覆蓋率,較Pt/CC電極及Pt/CP電極的未覆蓋率分別高34%和32%,意味著奈米碳管修飾電極(Pt/CNTs/CC)有34%和32%的性能增強是因快速的CO2氣泡移除能力。
     在第二部份的微氣泡觀測方面,使用高速數位相機的影像和模擬的結果來研究微結構觸媒上產生的化學O2微氣泡,在實心圓結構白金觸媒上有三階段的氣泡成長現象被實驗確認,第一階段是慣性控制階段(t < 0.2秒);第二階段是氣體產生率固定和駐足面積逐漸增加的階段(0.2 < t < 2.5秒);第三階段是氣體產生率和駐足面積兩者皆同時固定的階段(t > 2.5秒)。基於駐足面積(footing area)的觀測,這些實驗結果與理論的預測有很高的一致性。實驗結果顯示,當次級微結構完全被分開來及它們的特徵尺寸較其所產生的初始微氣泡的直徑(∼5 um)為大時,此時非連續性的網狀(mesh)結構能夠有效的縮短氣泡的脫離時間。然而同心圓狀(concentric circular)結構則沒有此一現象。白金網狀結構觸媒的氣泡駐足面積較白金實心圓結構觸媒和白金同心圓狀結構觸媒的氣泡駐足面積為小,因此同時提昇了氣泡產生的速率並且降低了氣泡和觸媒的黏著力。這些發現對未來微型甲醇燃料電池陽極腔體的設計將有相當的助益。


    This research mainly focus on the observation of micro-bubble and electrocatalytic test of anode for micro direct methanol fuel cells (μDMFC). We can discuss this issue from two parts. The first part is observing the CO2 micro-bubble and measure electrochemical signal simultaneously on different catalyst substrate electrodes. The second part is using CCD camera and high speed camera to observe the O2 micro-bubble growth and detached phenomenon on different type patterns of the diameter 80 μm Pt film.
    We can concluded from part one that using carbon nano tube (CNTs) as catalytic support can get less bubble accumulation on electrode surface and lead to improvement of the CO2 microbubble detaching capability. Also, the high bubble detachment rate and smaller detachment size observed in the optical system are consistent with the high frequency of current vibration in the electrochemical system. These results demonstrate that electrodes with nanostructures contribute to the mass transfer for electro-catalytic reactions composed of liquid reactants and gaseous products. The uncovered reaction area on the Pt/CNT/CC electrode was 34%, and was 32% higher than that on the Pt/CC and Pt/CP electrodes, respectively, which equates to a 34% and 32% performance enhancement, respectively, in the CNT-modified electrodes (Pt/CNT/CC) due to a faster CO2 bubble removal capability.
    At the second part of micro-bubble observation, we investigate the growth and detachment of chemically formed O2 micro-bubbles on micro-textured catalyst using a high-speed digital camera and simulation results. Three stages of bubble growth on a solid circular Pt catalyst were determined experimentally to be as follows. The first stage is one of inertial control (time <0.2s); the second stage is one of constant gas generation rate and increasing footing area (0.2< time <2.5s), and the third stage is one of constant gas generation rate with constant footing area (time >2.5s). These results are highly consistent with theoretical predictions based on footing area visualization. Experimental results revealed that a discontinuous mesh catalyst can effectively shorten the bubble detachment time when the substructures are thoroughly separated and the bubbles are larger than their initial size (∼5 um), while the concentric circular pattern does not. The footing area of the mesh catalyst is suggested to be smaller than that of the solid circular and concentric circular catalyst, promoting the generation of gas and simultaneously reducing the adhesive force between bubble and catalyst. These findings will be beneficial for the design of an anode chamber in μ DMFC in the future.

    目錄 摘要……………………………………………………………………i 誌謝……………………………………………………………………v 目錄……………………………………………………………………vi 表目錄…………………………………………………………………viii 圖目錄…………………………………………………………………ix 第一章 緒論…………………………………………………………1 1.1 燃料電池的特性………………………………………………2 1.2 燃料電池之市場及應用………………………………………4 1.3 直接甲醇燃料電池所面臨的問題……………………………7 1.4 研究動機與目標………………………………………………8 第二章 文獻回顧……………………………………………………11 2.1 DMFC中陽極氣泡移除相關文獻………………………………11 2.2電化學測試及微型化相關文獻…………………………………21 第三章 原理介紹……………………………………………………30 3.1 燃料電池工作原理…………………………………………30 3.1.1 電極反應……………………………………………………30 3.1.2 燃料電池理論電位之計算…………………………………32 3.1.3 燃料電池之能量損失………………………………………33 3.2 單一氣泡成長原理…………………………………………37 3.2.1 單一氣泡成長………………………………………………37 3.2.2 在不同微結構觸媒上產生氣泡……………………………38 3.3 直接甲醇燃料電池元件……………………………………40 第四章 實驗設備與方法……………………………………………44 4.1 實驗規劃……………………………………………………45 4.2 陽極半電池電化學測試同步CO2微氣泡觀測……………47 4.2.1 非奈米碳管試片製作………………………………………47 4.2.2 奈米碳管試片製作…………………………………………49 4.2.3 奈米碳管簡介………………………………………………54 4.2.4 電化學量測系統……………………………………………55 4.2.5 電化學電位掃描分析技術…………………………………57 4.2.6 電化學配合光學即時觀測系統……………………………61 4.3 微結構觸媒上O2微氣泡的成長與脫附觀測………………63 4.3.1 觀測試片製作………………………………………………63 4.3.2 氣泡觀測系統架設…………………………………………66 4.3.3 氣泡脫離機制………………………………………………67 第五章 實驗結果與討論……………………………………………70 5.1 陽極半電池電化學測試同步CO2微氣泡觀測………………70 5.1.1 Pt/CNTs/CC, Pt/CP 和 Pt/CC 觸媒電極之電化學量測…70 5.1.2 氣泡移除能力的比較………………………………………78 5.2 微結構觸媒上O2微氣泡的成長與脫附觀測………………83 第六章 結論…………………………………………………………98 第七章 未來工作……………………………………………………100 第八章 參考文獻……………………………………………………101

    1. 黃鎮江,"燃料電池" ,全華科技圖書,二版一刷,2005年3月。
    2. 左峻德,"燃料電池之特性與運用",行政院國家科學委員會科學技術資料中心,2001年1月。
    3. 楊志忠,"燃料電池的發展現況",科學發展,2003年7月,367期。
    4. 翁芳柏,"燃料電池簡介",工安環保報導,經濟部工業局,2001年10月。
    5. 財團法人國家實驗研究院科技政策研究與資訊中心,"市場報導" http://cdnet.stpi.org.tw/techroom/market/energy_fuelcell/eng_fuelcell001.htm
    6. B. Yang, A. Manthiram, "Multilayered membranes with suppressed fuel crossover for direct methanol fuel cells ", Electrochemistry Communications, 6; 231–236; 2004.
    7. 莊睿欣,"觀察甲醇燃料電池陽極氣泡產生與脫離現象-以雙氧水代替甲醇模擬氣泡的生成",國立清華大學 工程與系統科學系碩士論文,2005年7月。
    8. 王壽凱,"微型甲醇燃料電池之表面奈米化陽極電催化測試與微氣泡觀測研究",國立清華大學 工程與系統科學系碩士論文,2006年7月。
    9. P. Argyropoulos, K. Scott, and W. M. Taama, "Carbon dioxide evolution patterns in direct methanol fuel cells" ,Electrochimica Acta, vol. 44; 3575-3584; 1999.
    10. P. Argyropoulos, K. Scott, W.M. Taama, "Gas evolution and power performance in direct methanol fuel cells", Journal of Applied Electrochemistry, 29; 661-669; 1999.
    [11] K. Scott, W.M. Taama, P. Argyropoulos, "Material aspects of the liquid feed direct methanol fuel cell ", Journal of Applied Electrochemistry, 28; 1389-1397; 1998.
    12. G.Q.Lu, C.Y.Wang, "Electrochemical and flow characterization of a direct methanol fuel cell ", Journal of Power Sources, 134; 33-40; 2004.
    13. K. Scott, P. Argyropoulos, P. Yiannopoulos and W.M. Taama, "Electrochemical and gas evolution characteristic of direct methanol fuel cells with stainless steel mesh flow beds", Journal of Applied Electrochemistry, 31; 823-832; 2001.
    14. H. Yang, T.S Zhao, Q. Ye, "In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields", Journal of Power Sources, 139; 79-90; 2005.
    15. H. Yang, T.S Zhao, Q. Ye, "Addition of non-reacting gases to the anode flow field of DMFCs leading to improved performance", Electrochemistry Communications, 6; 1098-1103; 2004.
    16. T.Bewer, T. Beckmann, H. Dohle, J. Mergel, D. Stolten, "Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution", Journal of Power Sources, 125; 1-9; 2004.
    17. J. Zhang, G. P. Yin, Q. Z. Lai, Z. B. Wang, K. D. Cai, and P. Liu, "The influence of anode gas diffusion layer on the performance of low-temperature DMFC", Journal of Power Sources, 168; 453-458; 2007.
    18. M. Favelukis, G. S. Yablonsky, “Catalytic bubble model: bubble growth with an interfacial chemical reaction”, Ind Eng Chem Res, 43:4476-4482; 2004
    19. 潘欽,"沸騰熱傳與雙相流",國立編譯館,初版,2001年6月。
    20. K. Fei, W. H. Chen, C. W. Hong, “Microfluidic analysis of CO2 bubble dynamics using thermal lattice-Boltzmann method”, Microfluid Nanofluid, 5:119-129,2008.
    21. K. Fei, C. W. Hong, “All-angle removal of CO2 bubbles from the anode microchannels of a micro fuel cell by lattice-Boltzmann simulation”, Microfluid Nanofluid, 3:77-88, 2007.
    22. K. Fei, W. H. Cheng, C. W. Hong, “Lattice Boltzmann simulations of CO2 bubble dynamics at the node of a μDMFC”, Trans ASME J Fuel Cell Sci Tech, 3:180-187, 2006.
    23. Z. Liu, X. Lin, J. Y. Lee, W. Zhang, M. Han, L. M. Gan, "Preparation and Characterization of Platinum-Based Electrocatalysts on Multiwalled Carbon Nanotubes for Proton Exchange Membrane Fuel Cells", Langmuir, 18; 4054-4060; 2002.
    24. T. Matsumoto, T. Komatsu, H. Nakano, K. Arai, Y. Nagashima, E. Yoo, T. Yamazaki, M. kilima, H. Shimizu, Y. Takasawa, J. Nakamura, "Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells", Catalysis Today, 90; 277-281; 2004.
    25. Z. He, J. Chen, D. Liu, H. Tang, W. Deng, Y. Kuang, "Deposition and electrocatalytic properties of platinum nanoparticles on carbon nanotubes for methanol electrooxidation", Material Chemistry and Physics, 85; 396-401; 2004.
    26. Z. He, J. Chen, D. Liu, H. Zhou, Y. Kuang, "Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation", Diamond and Related Materials, 13; 1764-1770; 2004.
    27. Z. Liu, X. Y. Ling, B. Guo, L. Hong, J. Y. Lee, “Pt and PtRu nanoparticles deposited on single-wall carbon nanotubes for methanol electro-oxidation”, Journal of Power Sources, 167 (2007) 272-280.
    28. S. Motokawa, M. Mohamedi, T. Momma, S. Shoji, T. Osaka, " MEMS-based design and fabrication of a new concept micro direct methanol fuel cell (μ-DMFC)", Electrochemistry Communications, 6; 562-565; 2004.
    29. G. D. Arrigoa, C. Spinellaa, G. Arenab, S. Lorentib, " Fabrication of miniaturize Si-based electrocatalytic membranes", Materials Science and Engineering C, 23; 13-18; 2003.
    30. J. Yu, P. Cheng, Z. Maa, B. Yi, " Fabrication of a miniature twin-fuel-cell on silicon wafer", Electrochimica Acta, 48; 1537-1541; 2003.
    31. T. Pichonat, B. Gauthier-Manuel, D. Hauden, "A new proton-conducting porous silicon membrane for small fuel cells ", Chemical Engineering Journal, 101; 107-111; 2004.
    32. K. Kleiner, "Assault on batteries," Nature, vol. 441, pp. 1046-1047, Jun 2006.
    33. J. Larminie, A. Dicks, "Fuel Cell Systems Explained", WILEY, 2nd; 2003.
    34. V. Stralen, R. Cole, “ Boiling phenomena”, McGraw-Hill, New York, Chapter 3; 1979.
    35. V. P. Carey, “Liquid-vapor phase-change phenomena”, Hemisphere, New York; 1992.
    36. B. R. Fu, C. Pan, “Bubble growth with chemical reactions in microchannels”, Int J Heat and Mass Transfer, 52:767-776; 2009.
    37. Keshock, E. G., Siegel, “Forces acting on bubbles in nucleate boiling under normal and reduced gravity conditions”, NASA Technical Note, NASA TN D-2299; 1964.
    38. 黃朝榮,林修正,"專題報導-燃料電池的心臟-電極膜組",科學發展,367期,2003年7月。
    39. Quebec’s Fuel Cells and Hydrogen Network (FCH2), http://pach2.qc.ca/INDEXE.HTM
    40. M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg, "Graphite Fibers and Filaments", chapter 2.
    41. 馬遠榮,施政宏,"奈米碳管介紹",http://134.208.23.152/publications/publications3/publications3.htm
    42. 葉瑞銘,翁暢健,"簡介奈米碳管",http://www.chemnet.com.tw/magazine/200208/index5.htm
    43. J. Wang, Analytical Electrochemistry, 2nd ed.: A John Wiley & Sons, Inc., 2001.
    44. 吳浩青,李永舫,"電化學動力學",科技圖書,初版,2001年2月。
    45. 胡啟章,"電化學原理與方法",五南圖書,初版,2002年12月。
    46. D. R. Crow著,黃進益譯, "電化學的原理及應用( Principles and Applications of Electrochemistry )",高立圖書,初版,1998年6月。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE