研究生: |
張佑臺 Chang, You-Tai |
---|---|
論文名稱: |
以蕭基二極體實現高密度電阻式記憶體陣列之選擇器 Schottky Diode Based Selector for High-Density Resistive Random Access Memory |
指導教授: |
巫勇賢
Wu, Yung-Hsien |
口試委員: |
吳永俊
Wu, Yung-Chun 鄭淳護 Cheng, Chun-Hu |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 電阻式記憶體 、陣列 |
外文關鍵詞: | cross-bar, 1D1R |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電阻式記憶體在最近是十分熱門的非揮發性記憶體的研究,主要的原因是來自於結構簡單、低操作電壓、適合利用於元件尺寸微縮、寫入速度快並且容易整合在當今的CMOS技術上等優點。
電阻式記憶體有許多種應用,像是高密度的記憶體陣列或是整合於邏輯元件的1 transistor + 1 RRAM(1T1R)結構,其中最引人注目的就是電阻式記憶體可以利用cross-bar array的方式來進行高密度的堆疊。而進行cross-bar array的時候必需要克服的問題就是寄生電流(sneak current)的抑制,目前廣為人知的方發大致上可分為1S1R、1D1R、及互補電阻切換記憶體等方法。為了整合的便利性、及結構的簡單性於是選擇的討論方向是以Schottky diode來完成1D1R的結構,以增加電阻式記憶體的陣列數。而經過嘗試過後使用ZrTiOx(ZTO)為介電層,製作出結構為TaN/ZTO/Ni/N-Si為目前最適合的方法,利用這種結構可以使陣列數在100的時候還可以維持10%判讀的讀取區間。因此對於結構簡單的電阻式記憶體陣列上面,顯示出TaN/ZTO/Ni/N-Si是有極大的潛力。
Resistive random access memory(RRAM) is the hottest topic of nonvolatile memory studies. The advantages of RRAM are simple structure, fast switching speed, low voltage operation, easy for CMOS integration.
There are many applications of RRAM like cross-bar array for high density of cells or integrated with logic cells with the structure of 1 transistor + 1 RRAM(1T1R). The cross-bar array is the excellent idea to accomplish high density of memory cells array. But sneak current from cross-bar array must be avoided. There are some ways to avoid sneak current are known as 1 Selection device + 1 RRAM(1S1R), 1 diode + 1 RRAM(1D1R) or complementary resistive switching memory. The schottky diode of 1D1R cross-bar array are chosen with high integrating power with RRAM and simple structure. Finally, the ZrTiOx(ZTO) were used to be dielectric and the structure of TaN/ZTO/Ni/N-Si could have 10% of read windows with 100 word line or bit line number. For simple structure TaN/ZTO/Ni/N-Si is potential for RRAM array.
[1] G. A. Prinz, “Magnetoelectronics,” Science’s Compass Review, 1998, p. 1660.
[2] A. Pirovano, A. L. Lacaita, F. Pellizzer, S. A. Kostylev, A. Benvenuti, and R. Bez, “Low-field amorphous state resistance and threshold voltage drift in chalcongenide materials,” IEEE Trans. Electron Devices, vol. 51, 2004, p. 714.
[3] 政大科管所創新科技網, 2010.
[4] 呂正傑, 詹世雄, 國家奈米元件實驗室, 第五卷第四期.
[5] T. W. Hickmott, “Low-frequency negative resistance in thin anodic oxide films,” J. Appl. Phys. Lett., vol. 33, 1962, p. 2669.
[6] W. W. Zhuang, W. Pan, B. D. Ulrich, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, A. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Lhnatiev, “Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM),” in IEDM. Tech., 2002, p. 193.
[7] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges,” Adv. Mater., 2009, p. 2632.
[8] M. C. Wu, Y. W. Lin, W. Y. Jan, C. H. Lin, and T. Y. Tseng, “Low-power and highly reliable multilevel operation in ZrO2 1T1R RRAM,” IEEE Electron Devices Lett., vol. 32, 2011, p. 1026.
[9] D. Ielmini, F. Nardi, and C. Cagli, “Universal reset characteristics of unipolar and bipolar metal-oxide RRAM,” IEEE Trans. Electron Devices, vol. 58, 2011, p. 3246.
[10] A. Hazra, D. Acharyya, and P. Bhattacharyya, “Electrochemically grown nano-structured TiO2 based low power resistive random access memory,” IEEE ICECCN., 2013, p. 558.
[11] Y. S. Chen, B. Chen, B. Gao, F. F. Zhang, and Y. J. Qiu, “Anticrosstalk characteristics correlated with the set process for α-Fe2O3/Nb-SrTiO3 stack-based resistive switching device,” Appl. Phys. Lett., vol. 97, 2010, p. 262112.
[12] A. Sawa, “Resistive switching in transition metal oxides,” Materialstoday, vol. 11, 2008, p. 28.
[13] J. J. Huang, T. H. Hou, C. W. Hsu, Y. M. Tseng, W. H. Chang, W. Y. Jang, and C. H. Lin, “Flexible one diode-one resistor crossbar resistive-switching memory,” J. J. Appl. Phys., vol. 51, 2012, p. 04DD09.
[14] M. Y. Song, Y. Seo, Y. S. Kim, H. D. Kim, H. M. An, B. H. Park, Y. M. Sung, and T. G. Kim, “Realization of one-diode-type resistive-switching memory with Cr-SrTiO3 film,” APEX., vol. 5, 2012, p. 091202.
[15] C. L. Lo, M. C. Chen, J. J. Huang, and T. H. Hou, “One the potenrial of CRS, 1D1R, and 1S1R crossbar RRAM for storage-class memory,” in VLSI Symp. Tech. Dig., 2013, p. 1.
[16] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary resistive switches for passive nanocrossbar memories,” Nature Mater., vol. 9, 2010, p. 403.
[17] J. W. Seo, S. J. Baik, S. J. Kang, Y. H. Hong, and J. H. Yang, “ZnO cross-bar array resistive random access memory stacked with heterostructure diode for eliminating the sneak current effect,” Appl. Phys. Lett., vol. 98, 2011, p. 233505.
[18] H. Lv, Y. Li, Q. Liu, S. Long, L. Li, and M. Liu, “Self-rectifying resistive-switching device with a-Si/WO3 bilayer,” IEEE Electron Device Lett., vol. 34, 2013, p. 229.
[19] X. A. Tran, W. Zhu, W. J. Liu, Y. C. Yeo, B. Y. Nguyen, and H. Y. Yu, “Self-selection unipolar HfOx-based RRAM,” IEEE Trans. Election Devices, vol. 60, 2012, p. 391.
[20] M. Son, X. Liu, S. M. Sadaf, D. Lee, S. Park, W. Lee, S. Kim, J. Park, J. Shin, S. Jung, M. H. Ham, and H. Hwang, “Self-selective characteristics of nanoscale VOx devices for high-density ReRAM applications,” IEEE Electron Devices Lett., vol. 33, 2012, p. 718.
[21] X. Liu, S. M. Sadaf, S. Park, S. Kim, E. Cha, D. Lee, G. Y. Jung, and H. Hwang, “Complementary resistive switches in Niobium oxide-based resistive memory devices”, IEEE Electron Device Lett., vol. 34, 2013, p. 235.