研究生: |
梁順鑫 Shuen-Shin Liang |
---|---|
論文名稱: |
CrMnFeCoNi奈米顆粒磁性質之研究 Magnetic Properties of CrMnFeCoNi Multi-Element Nanoparticle |
指導教授: |
金重勳
Tsung-Shune Chin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | superhydride 、LSW theory 、超順磁 、矯頑場 、磁化量 、磁化率 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是利用superhydride (LiB(Et)3H)強還原劑,同時還原CrCl3、MnCl2、Fe(acac)2、Co(acac)2和Ni(acac)2等前趨物且以oleic acid為分散劑,製備出MnFe、MnFeCo、MnFeCoNi、CrMnFeCoNi奈米顆粒。
由XRD可知,除MnFe奈米顆粒外,未退火的顆粒皆為amorphous結構。退火後的試片,MnFe和MnFeCo奈米顆粒形成BCC+MnO2的結構。MnFeCoNi,Mn-rich和Mn-poor奈米顆粒皆為FCC。從本研究可知元素種類愈多和Mn含量愈少,奈米顆粒較不易氧化。
MnFe、Mn-poor和Mn-rich為均勻分佈的球狀顆粒; MnFeCo和MnFeCoNi則為不均勻分佈的非球狀顆粒。由LSW theory,可估計出MnFe和Mn-poor在粗化的過程中的活化能分別為15.8 (KJ/mol)和24.5 (KJ/mol),其活化能大小屬於表面擴散之活化能。Mn-poor在500 oC以下粗化時,活化能為13.3 (KJ/mol)屬表面擴散;在500 oC以上粗化時,活化能為311.8 (KJ/mol)屬體擴散。
奈米顆粒大小在超順磁區時,顆粒具低的矯頑場,低的飽和磁化量和中的超順磁相磁化率。在單磁區時,顆粒具有高的矯頑場,中的飽和磁化量,低的磁化率。在多磁區時,顆粒具中的矯頑場,高的飽和磁化量,低的磁化率。
In this study, the superhydride(LiB(Et)3H) reducing agent was used to reduce CrCl3, MnCl2, Fe(acac)2, Co(acac)2 and Ni(acac)2 at high temperature to synthesize the MnFe, MnFeCo, MnFeCoNi, and CrMnFeCoNi magnetic nanoparticles, and nanoparticles were dispersed by oleic acid in hexane.
The crystal structure of nanoparticles were identified by XRD. It showed that as-prepared nanoparticles were amorphous besides MnFe which appeared peaks of unknown structure. After annealing, MnFe nanoparticles and MnFeCo nanoparticles became the BCC and MnO2 phases. The structure of annealed MnFeCoNi, Mn-rich and Mn-poor nanoparticles were FCC. However, some unknown peaks were observed in Mn-rich nanoparticles annealed at 600°C.
The sizes of nanoparticles increased with annealing temperature. According to the LSW theory, the cubed diameter is proportional to the exponential of-Q/RT. For MnFe and Mn-rich nanopartcle, the active energys of the coarsening are 15.8(KJ/mol) and 24.5(KJ/mol) which suit for the surface diffusion. Below the 500°C, the active energy is 13.3(KJ/mol) for Mn-poor nanoparticles, and above the 500°C, it is 311.8(KJ/mol). It is clear that Mn-poor nanoparticles coarsen by surface diffusion at low temperature and by bulk diffusion at high temperature.
Form the measurement, magnetic nanoparticles showed low saturated magnetization(Ms), low cohesive field(Hc), and normal susceptibility of the paramagnetic phase in the superparamagnetic region. In the single domain region, there were normal Ms, high Hc, and low susceptibility. In the multi-domain region, there were high Ms, normal Hc and high susceptibility of superparamagnetic phase.
[1]. 陳宣佑,葉均蔚,孫道中, Al-Cr-Cu-Fe-Mn-Ni高熵合金變形及退火行為之研究,國立清華大學材料科學工程學系碩士論文,民93
[2]. Brian L. Cushing, Vladimir L. Kolesnichenko, and Charles J. O’Connor Chem. Rev. 2004, 104, 3893-3946
[3]. Park, J.-I.; Cheon, J. J. Am. Chem. Soc. 2001, 123, 5743.
[4]. Rockenberger, J.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem.Soc. 1999, 121, 11595.
[5]. Rajamathi, M.; Ghosh, M.; Seshadri, R. Chem. Commun. 2002, 1152.
[6]. Thimmaiah, S.; Rajamathi, M.; Singh, N.; Bera, P.; Meldrum, F.; Chandrasekhar, N.; Seshadri, R. J. Mater. Chem. 2001, 11, 3215.
[7]. Hou, Y.; Gao, S. J. Mater. Chem. 2003, 13, 1510.
[8]. Pan, C.; Pelzer, K.; Philippot, K.; Chaudret, B.; Dassenoy, F.; Lecante, P.; Casanove, M.-J. J. Am. Chem. Soc. 2001, 123, 7584.
[9]. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.
[10]. Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Nano Lett. 2001, 1, 207
[11]. Seo, W. S.; Jo, H. H.; Lee, K. M.; Park, J. T. Adv. Mater. (Weinheim, Ger.) 2003, 15, 795.
[12]. Wong, E. M.; Hoertz, P. G.; Liang, C. J.; Shi, B.-M.; Meyer, G. J.; Searson, P. C. Langmuir 2001, 17, 8362.
[13]. Viau, G.; Brayner, R.; Poul, L.; Chakroune, N.; Lacaze, E.; Fievet- Vincent, F.; Fievet, F. Chem. Mater. 2003, 15, 486.
[14]. Chen, S.; Huang, K.-C.; Stearns, J. A. Chem. Mater. 2000, 12, 540.
[15]. Thomas, P. J.; Kulkarni, G. U.; Rao, C. N. R. J. Phys. Chem. B 2000, 104, 8138.
[16]. Herron, N.; Calabrese, J. C.; Farneth, W. e.; Wang, Y. Science 1993, 259, 1426.
[17]. Maye, M. M.; Zheng, W.; Leibowitz, F. L.; Ly, N. K.; Zhong, C.- J. Langmuir 2000, 16, 490.
[18]. Maye, M. M.; Zhong, C.-J. J. Mater. Chem. 2000, 10, 1895.
[19]. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Chem. Commun. 1994, 801.
[20]. Krautscheid, H.; Fenske, D.; Baum, G.; Semmelmann, M. Angew. Chem., Int. Ed. 1993, 32, 1303.
[21]. Schreder, B.; Schmidt, T.; Ptatschek, V.; Winkler, U.; Materny, A.; Umbach, E.; Lerch, M.; Muller, G.; Kiefer, W.; Spanhel, L. J. Phys. Chem. B 2000, 104, 1677.
[22]. 何建新,賴志煌,FePt奈米微粒之製備與自組裝特性研究,國立清華大學材料科學工程學系碩士論文,民93。
[23]. Trentler, T. J.; Denler, T. E.; Bertone, J. F.; Agrawal, A.; Colvin, V. L. J. Am. Chem. Soc. 1999, 121, 1613.
[24]. Caruntu, D.; Remond, Y.; Chou, N. H.; Jun, M.-J.; Caruntu, G.; He, J.; Goloverda, G.; O’Connor, C.; Kolesnichenko, V. Inorg. Chem. 2002, 41, 6137.
[25]. Murray, C. B.; Sun, S.; Doyle, H.; Betley, T. MRS Bull. 2001, 985.
[26]. Sun, S.; Zeng, H. J. Am. Chem. Soc. 2002, 124, 8204
[27]. Shafi, K. V. P. M.; Ulman, A.; Yan, X.; Yang, N.-L.; Estournes, C.; White, H.; Rafailovich, M. Langmuir 2001, 17, 5093.
[28]. Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B. J. Am. Chem. Soc. 2001, 123, 12798.
[29]. Bourlinos, A. B.; Simopoulos, A.; Petridis, D. Chem. Mater. 2002, 14, 899.
[30]. Wang, Y.; Teng, X.; Wang, J.-S.; Yang, H. Nano Lett. 2003, 3, 789.
[31]. Boal, A. K.; Das, K.; Gray, M.; Rotello, V. M. Chem. Mater. 2002, 14, 2628.
[32]. O’Brien, S.; Brus, L.; Murray, C. B. J. Am. Chem. Soc. 2001, 123, 12085.
[33]. Perales-Perez, O.; Sasaki, H.; Kasuya, A.; Jeyadevan, B.; Tohji, K.; Hihara, T.; Sumiyama, K. J. Appl. Phys. 2002, 91.
[34]. Sun, S.; Murray, C. B.; Doyle, H. Mater. Res. Soc. Symp. Proc. 1999, 577, 385.
[35]. Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 183.
[36]. Peng, X.; Wickham, J.; Alivisatos, A. P. J. Am. Chem. Soc. 1998, 120, 5343.
[37]. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science 1995, 270, 1335.
[38]. Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P. Science 2001, 291, 2115.
[39]. Wang, S.; Zin, H. J. Phys. Chem. B 2000, 104, 5681.
[40]. Qu, L.; Peng, Z. A.; Peng, X. Nano Lett. 2001, 1, 333.
[41]. Qu, L.; Peng, X. J. Am. Chem. Soc. 2002, 124, 2049.
[42]. Milliron, D. J.; Alivisatos, A. P.; Pitois, C.; Edder, C.; Fre´chet, M. J. Adv. Mater. (Weinheim, Ger.) 2003, 15, 58.
[43]. Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Nano Lett. 2001, 1, 207.
[44]. Guzelian, A. A.; Katari, J. E. B.; Kadavanich, A. V.; Banin, U.; Hamad, K.; Juban, E.; Alivisatos, A. P.; Wolters, R. H.; Arnold, C. C.; Heath, J. R. J. Phys. Chem. 1996, 100, 7212.
[45]. Kim, D.-K.; Mikhailova, M.; Zhang, Y.; Muhammed, M. Chem. Mater. 2003, 15, 1617.
[46]. Ji, T.; Jian, W.-B.; Fang, J. J. Am. Chem. Soc. 2003, 125, 8448.
[47]. Murray, C. B.; Sun, S.; Gaschler, W.; Doyle, H.; Betley, T. A.; Kagan, C. R. IBM J. Res. Dev. 2001, 45, 47.
[48]. Wakefield, G.; Keron, H. A.; Dobson, P. J.; Hitchison, J. L. J. Colloid Interface Sci. 1999, 215, 179.
[49]. (625) Roberts, D.; Zhu, W. L.; Frommen, C. M.; Rosenzweig, Z. J. Appl. Phys. 2000, 87, 6208.
[50]. Manna, L.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc. 2000, 122, 12700.
[51]. Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 1389.
[52]. Grosso, D.; Sermon, P. A. J. Mater. Chem. 2000, 10, 359.
[53]. Pelet, S.; Gratzel, M.; Moser, J.-E. J. Phys. Chem. B 2003, 107, 3215.
[54]. Oskam, G.; Hu, Z.; Penn, R. L.; Pesika, N.; Searson, P. C. Phys. Rev. E 2002, 66, 011403.
[55]. Marquez, M.; Robinson, J.; Van Nostrand, V.; Schaefer, D.; Ryzhkov, L. R.; Lowe, W.; Suib, S. L. Chem. Mater. 2002, 14, 1493.
[56]. Aquino, R.; Tourinho, F. A.; Itri, R.; Lara, M. C. F. L.; Depeyrot, J. J. Magn. Magn. Mater. 2002, 252, 23.
[57]. McKenzie, K. J.; Marken, F. Pure Appl. Chem. 2001, 73, 1885.
[58]. Xu, X.; Friedman, G.; Humfeld, K. D.; Majetich, S. A.; Asher, S. A. Chem. Mater. 2002, 14, 1249.
[59]. Kang, Y. S.; Risbud, S.; Rabolt, J. F.; Stroeve, P. Chem. Mater. 1996, 8, 2209.
[60]. Babes, L.; Denizot, B.; Tanguy, G.; Le Jeune, J. J.; Jallet, P. J. Colloid Interface Sci. 1999, 212, 474.
[61]. Zaitsev, V. S.; Filimonov, D. S.; Gambino, R. J.; Chu, B. J. Colloid Interface Sci. 1999, 212, 49.
[62]. Kim, D.-K.; Mikhailova, M.; Zhang, Y.; Muhammed, M. Chem. Mater. 2003, 15, 1617.
[63]. Sauzedde, F.; Elaissari, A.; Pichot, C. Colloid Polym. Sci. 1999, 277, 846.
[64]. Sousa, M. H.; Tourinho, F. A.; Depeyrot, J.; da Silva, G. J.; Lara, M. C. F. L. J. Phys. Chem. B 2001, 105, 1168.
[65]. Meulenkamp, E. A. J. Phys. Chem. B 1998, 102, 5566.
[66]. Henglein, A. J. Phys. Chem. B 2000, 104, 6683.
[67]. Rogach, A. L.; Nagesha, D.; Ostrander, J. W.; Giersig, M.; Kotov, N. A. Chem. Mater. 2000, 12, 2676.
[68]. Broussous, L.; Santilli, C. V.; Pulcinelli, S. H.; Craievich, A. F. J. Phys. Chem. B 2002, 106, 2855.
[69]. Van der Zande, B. M. I.; Dhont, J. K. G.; Bohmer, M. R.; Philipse, A. P. Langmuir 2000, 16, 459.
[70]. Spalla, O.; Kekicheff, P. J. Colloid Interface Sci. 1997, 192, 43.
[71]. Dan V. Goia and Egon Matijevic New J. Chem., 1998, 1203-1215
[72]. Marcel Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions
[73]. Helmut Bonnemann, Werner Brijoux, and Thomas Joussen, Angew. Chem. Int. Ed. Engl. 29(1990 )No.3 273-276
[74]. J. Frenkel and J. Dorfman, Nature (London) 126, 274 (1930)
[75]. A.H. Morrish, “The Physical Principles of Magentism”, wiley, New York, 1965
[76]. B. D.Cullity, “Introduction to Magnetic Materials”, Addison-Wesley, 1972
[77]. Neel, Louis, “Influnence des fluctuations thermiques sur lamentation de grains ferromagentique tres fins”, Compt. Rend., 228, 664-666. (1949)
[78]. R.H. Kodama, “Magnetic nanoparticles”, JMMM, 200, 359, 1999
[79]. I.M. L Billas, Achatelain, W.A. de Heer, Science, 265, 1682, 1994
[80]. R.H. Kodama, “Magnetic nanoparticles”, JMMM, 168, 64, 1997
[81]. A.J. Freeman, C.L. Fu, S.Ohnishi, M.Weinert, in: R. Feder(Ed.), Polarized Electrons inSurface Physics, World Scientific, Singapore, 1985, pp3-66
[82]. Y. Labye, et.al, JAP, 91, 8715 (2002)
[83]. 汪建民, 材料分析, 中國材料學會 民87