簡易檢索 / 詳目顯示

研究生: 梁順鑫
Shuen-Shin Liang
論文名稱: CrMnFeCoNi奈米顆粒磁性質之研究
Magnetic Properties of CrMnFeCoNi Multi-Element Nanoparticle
指導教授: 金重勳
Tsung-Shune Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 96
中文關鍵詞: superhydrideLSW theory超順磁矯頑場磁化量磁化率
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用superhydride (LiB(Et)3H)強還原劑,同時還原CrCl3、MnCl2、Fe(acac)2、Co(acac)2和Ni(acac)2等前趨物且以oleic acid為分散劑,製備出MnFe、MnFeCo、MnFeCoNi、CrMnFeCoNi奈米顆粒。
    由XRD可知,除MnFe奈米顆粒外,未退火的顆粒皆為amorphous結構。退火後的試片,MnFe和MnFeCo奈米顆粒形成BCC+MnO2的結構。MnFeCoNi,Mn-rich和Mn-poor奈米顆粒皆為FCC。從本研究可知元素種類愈多和Mn含量愈少,奈米顆粒較不易氧化。
    MnFe、Mn-poor和Mn-rich為均勻分佈的球狀顆粒; MnFeCo和MnFeCoNi則為不均勻分佈的非球狀顆粒。由LSW theory,可估計出MnFe和Mn-poor在粗化的過程中的活化能分別為15.8 (KJ/mol)和24.5 (KJ/mol),其活化能大小屬於表面擴散之活化能。Mn-poor在500 oC以下粗化時,活化能為13.3 (KJ/mol)屬表面擴散;在500 oC以上粗化時,活化能為311.8 (KJ/mol)屬體擴散。
    奈米顆粒大小在超順磁區時,顆粒具低的矯頑場,低的飽和磁化量和中的超順磁相磁化率。在單磁區時,顆粒具有高的矯頑場,中的飽和磁化量,低的磁化率。在多磁區時,顆粒具中的矯頑場,高的飽和磁化量,低的磁化率。


    In this study, the superhydride(LiB(Et)3H) reducing agent was used to reduce CrCl3, MnCl2, Fe(acac)2, Co(acac)2 and Ni(acac)2 at high temperature to synthesize the MnFe, MnFeCo, MnFeCoNi, and CrMnFeCoNi magnetic nanoparticles, and nanoparticles were dispersed by oleic acid in hexane.
    The crystal structure of nanoparticles were identified by XRD. It showed that as-prepared nanoparticles were amorphous besides MnFe which appeared peaks of unknown structure. After annealing, MnFe nanoparticles and MnFeCo nanoparticles became the BCC and MnO2 phases. The structure of annealed MnFeCoNi, Mn-rich and Mn-poor nanoparticles were FCC. However, some unknown peaks were observed in Mn-rich nanoparticles annealed at 600°C.
    The sizes of nanoparticles increased with annealing temperature. According to the LSW theory, the cubed diameter is proportional to the exponential of-Q/RT. For MnFe and Mn-rich nanopartcle, the active energys of the coarsening are 15.8(KJ/mol) and 24.5(KJ/mol) which suit for the surface diffusion. Below the 500°C, the active energy is 13.3(KJ/mol) for Mn-poor nanoparticles, and above the 500°C, it is 311.8(KJ/mol). It is clear that Mn-poor nanoparticles coarsen by surface diffusion at low temperature and by bulk diffusion at high temperature.
    Form the measurement, magnetic nanoparticles showed low saturated magnetization(Ms), low cohesive field(Hc), and normal susceptibility of the paramagnetic phase in the superparamagnetic region. In the single domain region, there were normal Ms, high Hc, and low susceptibility. In the multi-domain region, there were high Ms, normal Hc and high susceptibility of superparamagnetic phase.

    第一章 簡介 1 第二章 文獻回顧 4 2-1 高熵合金 4 2-2 製程方法(共沉法) 8 2-2-1 成核 8 2-2-2 成長 10 2-2-3 粗化 11 2-2-4 分散劑 12 2-2-5 pH值對化學反應的影響 18 2-2-6 還原劑 22 2-3 磁性材料奈米化 27 2-3-1 單一磁區 27 2-3-2 矯頑場上升 27 2-3-3 超順磁 28 2-3-4 表面電子自旋不規則 28 2-3-5 表面磁性異向性能 28 第三章 實驗步驟 29 3-1 藥品及器材 29 3-2 製備步驟 32 3-3 檢測儀器介紹與原理 34 第四章 結果與討論 38 4-1多元奈米顆粒製備與組成 38 4-2 元素與結晶構造 43 4-3 元素與磁性質 52 4-4 退火與微觀結構 58 4-5 活化能與顆粒大小 71 4-6 均勻顆粒成長與矯頑場之關係 75 4-7 凝團顆粒退火溫度與矯頑場之關係 79 4-8 均勻成長顆粒大小與順磁相磁化率之關係 81 4-9 凝團顆粒退火溫度與順磁相磁化率之關係 87 第五章 結論 89 5-1 多元奈米顆粒製備 89 5-2 多元奈米顆粒結晶構造 89 5-3 多元奈米顆粒微觀結構 90 5-4 多元奈米顆粒之磁化性 90 節六章 未來工作 92 參考文獻 93

    [1]. 陳宣佑,葉均蔚,孫道中, Al-Cr-Cu-Fe-Mn-Ni高熵合金變形及退火行為之研究,國立清華大學材料科學工程學系碩士論文,民93
    [2]. Brian L. Cushing, Vladimir L. Kolesnichenko, and Charles J. O’Connor Chem. Rev. 2004, 104, 3893-3946
    [3]. Park, J.-I.; Cheon, J. J. Am. Chem. Soc. 2001, 123, 5743.
    [4]. Rockenberger, J.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem.Soc. 1999, 121, 11595.
    [5]. Rajamathi, M.; Ghosh, M.; Seshadri, R. Chem. Commun. 2002, 1152.
    [6]. Thimmaiah, S.; Rajamathi, M.; Singh, N.; Bera, P.; Meldrum, F.; Chandrasekhar, N.; Seshadri, R. J. Mater. Chem. 2001, 11, 3215.
    [7]. Hou, Y.; Gao, S. J. Mater. Chem. 2003, 13, 1510.
    [8]. Pan, C.; Pelzer, K.; Philippot, K.; Chaudret, B.; Dassenoy, F.; Lecante, P.; Casanove, M.-J. J. Am. Chem. Soc. 2001, 123, 7584.
    [9]. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.
    [10]. Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Nano Lett. 2001, 1, 207
    [11]. Seo, W. S.; Jo, H. H.; Lee, K. M.; Park, J. T. Adv. Mater. (Weinheim, Ger.) 2003, 15, 795.
    [12]. Wong, E. M.; Hoertz, P. G.; Liang, C. J.; Shi, B.-M.; Meyer, G. J.; Searson, P. C. Langmuir 2001, 17, 8362.
    [13]. Viau, G.; Brayner, R.; Poul, L.; Chakroune, N.; Lacaze, E.; Fievet- Vincent, F.; Fievet, F. Chem. Mater. 2003, 15, 486.
    [14]. Chen, S.; Huang, K.-C.; Stearns, J. A. Chem. Mater. 2000, 12, 540.
    [15]. Thomas, P. J.; Kulkarni, G. U.; Rao, C. N. R. J. Phys. Chem. B 2000, 104, 8138.
    [16]. Herron, N.; Calabrese, J. C.; Farneth, W. e.; Wang, Y. Science 1993, 259, 1426.
    [17]. Maye, M. M.; Zheng, W.; Leibowitz, F. L.; Ly, N. K.; Zhong, C.- J. Langmuir 2000, 16, 490.
    [18]. Maye, M. M.; Zhong, C.-J. J. Mater. Chem. 2000, 10, 1895.
    [19]. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Chem. Commun. 1994, 801.
    [20]. Krautscheid, H.; Fenske, D.; Baum, G.; Semmelmann, M. Angew. Chem., Int. Ed. 1993, 32, 1303.
    [21]. Schreder, B.; Schmidt, T.; Ptatschek, V.; Winkler, U.; Materny, A.; Umbach, E.; Lerch, M.; Muller, G.; Kiefer, W.; Spanhel, L. J. Phys. Chem. B 2000, 104, 1677.
    [22]. 何建新,賴志煌,FePt奈米微粒之製備與自組裝特性研究,國立清華大學材料科學工程學系碩士論文,民93。
    [23]. Trentler, T. J.; Denler, T. E.; Bertone, J. F.; Agrawal, A.; Colvin, V. L. J. Am. Chem. Soc. 1999, 121, 1613.
    [24]. Caruntu, D.; Remond, Y.; Chou, N. H.; Jun, M.-J.; Caruntu, G.; He, J.; Goloverda, G.; O’Connor, C.; Kolesnichenko, V. Inorg. Chem. 2002, 41, 6137.
    [25]. Murray, C. B.; Sun, S.; Doyle, H.; Betley, T. MRS Bull. 2001, 985.
    [26]. Sun, S.; Zeng, H. J. Am. Chem. Soc. 2002, 124, 8204
    [27]. Shafi, K. V. P. M.; Ulman, A.; Yan, X.; Yang, N.-L.; Estournes, C.; White, H.; Rafailovich, M. Langmuir 2001, 17, 5093.
    [28]. Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B. J. Am. Chem. Soc. 2001, 123, 12798.
    [29]. Bourlinos, A. B.; Simopoulos, A.; Petridis, D. Chem. Mater. 2002, 14, 899.
    [30]. Wang, Y.; Teng, X.; Wang, J.-S.; Yang, H. Nano Lett. 2003, 3, 789.
    [31]. Boal, A. K.; Das, K.; Gray, M.; Rotello, V. M. Chem. Mater. 2002, 14, 2628.
    [32]. O’Brien, S.; Brus, L.; Murray, C. B. J. Am. Chem. Soc. 2001, 123, 12085.
    [33]. Perales-Perez, O.; Sasaki, H.; Kasuya, A.; Jeyadevan, B.; Tohji, K.; Hihara, T.; Sumiyama, K. J. Appl. Phys. 2002, 91.
    [34]. Sun, S.; Murray, C. B.; Doyle, H. Mater. Res. Soc. Symp. Proc. 1999, 577, 385.
    [35]. Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 183.
    [36]. Peng, X.; Wickham, J.; Alivisatos, A. P. J. Am. Chem. Soc. 1998, 120, 5343.
    [37]. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science 1995, 270, 1335.
    [38]. Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P. Science 2001, 291, 2115.
    [39]. Wang, S.; Zin, H. J. Phys. Chem. B 2000, 104, 5681.
    [40]. Qu, L.; Peng, Z. A.; Peng, X. Nano Lett. 2001, 1, 333.
    [41]. Qu, L.; Peng, X. J. Am. Chem. Soc. 2002, 124, 2049.
    [42]. Milliron, D. J.; Alivisatos, A. P.; Pitois, C.; Edder, C.; Fre´chet, M. J. Adv. Mater. (Weinheim, Ger.) 2003, 15, 58.
    [43]. Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Nano Lett. 2001, 1, 207.
    [44]. Guzelian, A. A.; Katari, J. E. B.; Kadavanich, A. V.; Banin, U.; Hamad, K.; Juban, E.; Alivisatos, A. P.; Wolters, R. H.; Arnold, C. C.; Heath, J. R. J. Phys. Chem. 1996, 100, 7212.
    [45]. Kim, D.-K.; Mikhailova, M.; Zhang, Y.; Muhammed, M. Chem. Mater. 2003, 15, 1617.
    [46]. Ji, T.; Jian, W.-B.; Fang, J. J. Am. Chem. Soc. 2003, 125, 8448.
    [47]. Murray, C. B.; Sun, S.; Gaschler, W.; Doyle, H.; Betley, T. A.; Kagan, C. R. IBM J. Res. Dev. 2001, 45, 47.
    [48]. Wakefield, G.; Keron, H. A.; Dobson, P. J.; Hitchison, J. L. J. Colloid Interface Sci. 1999, 215, 179.
    [49]. (625) Roberts, D.; Zhu, W. L.; Frommen, C. M.; Rosenzweig, Z. J. Appl. Phys. 2000, 87, 6208.
    [50]. Manna, L.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc. 2000, 122, 12700.
    [51]. Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 1389.
    [52]. Grosso, D.; Sermon, P. A. J. Mater. Chem. 2000, 10, 359.
    [53]. Pelet, S.; Gratzel, M.; Moser, J.-E. J. Phys. Chem. B 2003, 107, 3215.
    [54]. Oskam, G.; Hu, Z.; Penn, R. L.; Pesika, N.; Searson, P. C. Phys. Rev. E 2002, 66, 011403.
    [55]. Marquez, M.; Robinson, J.; Van Nostrand, V.; Schaefer, D.; Ryzhkov, L. R.; Lowe, W.; Suib, S. L. Chem. Mater. 2002, 14, 1493.
    [56]. Aquino, R.; Tourinho, F. A.; Itri, R.; Lara, M. C. F. L.; Depeyrot, J. J. Magn. Magn. Mater. 2002, 252, 23.
    [57]. McKenzie, K. J.; Marken, F. Pure Appl. Chem. 2001, 73, 1885.
    [58]. Xu, X.; Friedman, G.; Humfeld, K. D.; Majetich, S. A.; Asher, S. A. Chem. Mater. 2002, 14, 1249.
    [59]. Kang, Y. S.; Risbud, S.; Rabolt, J. F.; Stroeve, P. Chem. Mater. 1996, 8, 2209.
    [60]. Babes, L.; Denizot, B.; Tanguy, G.; Le Jeune, J. J.; Jallet, P. J. Colloid Interface Sci. 1999, 212, 474.
    [61]. Zaitsev, V. S.; Filimonov, D. S.; Gambino, R. J.; Chu, B. J. Colloid Interface Sci. 1999, 212, 49.
    [62]. Kim, D.-K.; Mikhailova, M.; Zhang, Y.; Muhammed, M. Chem. Mater. 2003, 15, 1617.
    [63]. Sauzedde, F.; Elaissari, A.; Pichot, C. Colloid Polym. Sci. 1999, 277, 846.
    [64]. Sousa, M. H.; Tourinho, F. A.; Depeyrot, J.; da Silva, G. J.; Lara, M. C. F. L. J. Phys. Chem. B 2001, 105, 1168.
    [65]. Meulenkamp, E. A. J. Phys. Chem. B 1998, 102, 5566.
    [66]. Henglein, A. J. Phys. Chem. B 2000, 104, 6683.
    [67]. Rogach, A. L.; Nagesha, D.; Ostrander, J. W.; Giersig, M.; Kotov, N. A. Chem. Mater. 2000, 12, 2676.
    [68]. Broussous, L.; Santilli, C. V.; Pulcinelli, S. H.; Craievich, A. F. J. Phys. Chem. B 2002, 106, 2855.
    [69]. Van der Zande, B. M. I.; Dhont, J. K. G.; Bohmer, M. R.; Philipse, A. P. Langmuir 2000, 16, 459.
    [70]. Spalla, O.; Kekicheff, P. J. Colloid Interface Sci. 1997, 192, 43.
    [71]. Dan V. Goia and Egon Matijevic New J. Chem., 1998, 1203-1215
    [72]. Marcel Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions
    [73]. Helmut Bonnemann, Werner Brijoux, and Thomas Joussen, Angew. Chem. Int. Ed. Engl. 29(1990 )No.3 273-276
    [74]. J. Frenkel and J. Dorfman, Nature (London) 126, 274 (1930)
    [75]. A.H. Morrish, “The Physical Principles of Magentism”, wiley, New York, 1965
    [76]. B. D.Cullity, “Introduction to Magnetic Materials”, Addison-Wesley, 1972
    [77]. Neel, Louis, “Influnence des fluctuations thermiques sur lamentation de grains ferromagentique tres fins”, Compt. Rend., 228, 664-666. (1949)
    [78]. R.H. Kodama, “Magnetic nanoparticles”, JMMM, 200, 359, 1999
    [79]. I.M. L Billas, Achatelain, W.A. de Heer, Science, 265, 1682, 1994
    [80]. R.H. Kodama, “Magnetic nanoparticles”, JMMM, 168, 64, 1997
    [81]. A.J. Freeman, C.L. Fu, S.Ohnishi, M.Weinert, in: R. Feder(Ed.), Polarized Electrons inSurface Physics, World Scientific, Singapore, 1985, pp3-66
    [82]. Y. Labye, et.al, JAP, 91, 8715 (2002)
    [83]. 汪建民, 材料分析, 中國材料學會 民87

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE