研究生: |
李文豪 Li, Wen-Hao |
---|---|
論文名稱: |
以突變之嗜鹼性芽孢桿菌轉化廢棄蛋白成色胺酸 Conversion of protein hydrolysate into L-Trytophan by extreme alkaliphile Bacillus marmarensis Mutants |
指導教授: |
沈若樸
Shen, Roa-Pu |
口試委員: |
黃煒智
蘭宜錚 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 突變 、嗜鹼性 、芽孢桿菌 、廢棄蛋白 、轉化 、色胺酸 |
外文關鍵詞: | protein hydrolysate, Trytophan, alkaliphile, Bacillus marmarensis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
面對大量廢棄蛋白副產物的時代,及大量氮肥料施用於土壤中,許多優養化河川溪流相關問題隨之而出,目的為提高轉化環境中含氮廢棄物,我們在此提供一株具有潛力於極度鹼性環境中分解蛋白質之菌株,進而轉化為有用之色胺酸,此胺基酸常是神經作用相關藥物之前驅物。
在本論文研究方向為利用廢棄大腸桿菌菌體做為蛋白營養液來源,嗜鹼性Bacillus marmarensis是一隻還未完善開發之菌株,先以木糖及葡萄糖測試其偏好氧含量環境,分析其基本生長狀況下之有機酸產物。嘗試各種前處理方法來取得菌體蛋白養分,探討芽孢桿菌蛋白酶分解能力、蛋白營養程度和其他變因之關係。測試對於生產菌株之各種色胺酸類似物毒性,選擇有效之類似物符合後續之要求,利用NTG藥物突變生產菌株及天然競爭篩選方式選出目標菌株,再經由調整緩衝液之pH值來克服實驗障礙,藉而篩選出有色胺酸氨基酸生產能力之菌株,最高色胺酸產量為75.2mg/L,最後嘗試將其進行轉殖表現異源基因corynebacterium glutamicum之基因cFMO。
Faced with the era of a large number of waste protein by-products, and the application of a large amount of nitrogen fertilizer to the soil, many problems related to the eutrophication of rivers and streams have followed. With the aim of increasing the value of the nitrogenous waste in the environment, we provide a strain that has the potential to degrade proteins into protein skeleton in an extremely alkaline environment and then converted into valuable biochemical such as tryptophan which is often a precursor to neurologically-related drugs without the need for sterility.
In this paper, the research direction is to use the waste E. coli bacteria as the source of protein nutrient solution. The alkaliphile Bacillus marmarensis is a strain that has not been fully developed. We test its preferred oxygen content environment based on xylose and glucose. The organic acid product under growth conditions. we performed a variety of pre-treatment methods to obtain cell lysates of the model microorganism E. coli.We explored the effect of protein source, oxygen level, and pH on the hydrolytic ability of the B. marmarensis protease. In order to improve L-tryptophan production titers, we will expose B. marmarensis to various amino acid analogs and perform a selection process coupled to NTG random mutagenesis and natural passing with increasing tryptophan analog concentration. Then, by adjusting the pH value of the buffer to overcome the experimental obstacles, the tryptophan amino acid production ability of the strain was screened, and the highest tryptophan yield was 75.2 mg/L. Finally ,we attempts to transform it to express the gene cFMO of the heterologous gene corynebacterium glutamicum.
1. Wijffels, R. H.; Barbosa, M. J., An outlook on microalgal biofuels. Science 2010, 329 (5993), 796-9.
2. Miller, S. A., Minimizing land use and nitrogen intensity of bioenergy. Environ Sci Technol 2010, 44 (10), 3932-9.
3. Melillo, J. M.; Reilly, J. M.; Kicklighter, D. W.; Gurgel, A. C.; Cronin, T. W.; Paltsev, S.; Felzer, B. S.; Wang, X.; Sokolov, A. P.; Schlosser, C. A., Indirect emissions from biofuels: how important? Science 2009, 326 (5958), 1397-9.
4. 牟中原, 氮的故事—哈伯法製氨及其穎養. 2015.
5. Howarth, R. W., Coastal nitrogen pollution: A review of sources and trends globally and regionally. Harmful Algae 2008, 8 (1), 14-20.
6. wikipedia, Haber process. 2008.
7. Yuan, M., Managing Energy in Fertilizer Production and Use. 2014.
8. 朱兆良, 氮循環. 2010.
9. 有機廢棄物回收公司, 關於有機廢棄物. 2018.
10. 黃筱歡, 游., 全台1000公噸廚餘拉緊報:不能餵豬,送去這「五個地方」有救嗎?. 2019.
11. 莊安華, 豬糞變綠金,沼氣發電達成循環經濟. 2017.
12. 劉怡馨, 稻草真的不用燒!加入含菌有機肥腐熟,兩週可入土同時當基肥. 2018.
13. Wadhwa, M.; Bakshi, M., Application of waste-derived proteins in the animal feed industry. In Protein Byproducts, Elsevier: 2016; pp 161-192.
14. 行政院農業委員會, 綠色國民所得帳農業固體廢棄物歷年表. 106年.
15. 農業藥物毒物試驗所, 廢棄雞羽毛變綠金. 2017.
16. Reddy, N.; Santosh, M., Recovery and Applications of Feather Proteins. In Protein Byproducts, Elsevier: 2016; pp 255-274.
17. White, J.; Traub, J. E.; Maskell, D. L.; Hughes, P.; Harper, A.; Willoughby, N., Recovery and applications of proteins from distillery by-products. In Protein Byproducts, Elsevier: 2016; pp 235-253.
18. 行政院環境保護署, 農業事業廢棄物再利用機構許可及登記檢核資料. 2016.
19. 財政部關稅署, 財政部關稅署進出口統計資料庫. 2018.
20. 黃煜成. 廚餘, 豆渣及蔬菜廢棄物混和堆肥化. 國立高雄第一科技大學-環境與安全衛生工程研究所, 2011.
21. 李憶璇, 金門高粱酒「酒糟」 從廢棄物變黃金. 2012.
22. 江和, 王., 金門酒廠汙染不斷 酒糟被視為「隱形炸彈」. 2017.
23. 高粱酒粕 高蛋白飼料 牛飼料 豬飼料 雞飼料 羊飼料 水產飼料 30公斤裝 1包30公斤https://goods.ruten.com.tw/item/show?21406306954583. 2019.
24. 蘇夢蘭, 化腐朽為神奇-家禽屠宰副產物化製場. 2000.
25. 豐蚯羽毛肥料(粉粒狀)有機質肥料 https://www.coir.url.tw/m_coir.php?products_id=6937. 2019.
26. 養殖農業, 生態養豬模式比較及國外豬糞處理借鑑. 2017.
27. 鄭健雄、蔡宜峰, 農村廢棄物堆肥化處理與利用. 1995.
28. 行政院農業委員會, 畜牧資源回收再利用之發產與未來. 2000.
29. 行政院農業委員會, 豬糞能源化之現況與契機. 2008.
30. 林宜潔, 生雞糞作肥料致污染,新型雞糞粒肥可望提供解方. 2018.
31.
有機肥發酵雞糞肥蔬菜花卉盆栽綠植果樹雞糞有機肥料花肥菜肥https://item.taobao.com/item.htm?id=569611704717&ali_refid=a3_430833_1006:1152325590:N:%2F9E8THKvUfXLnTd%2FD%2FJrtg%3D%3D:0265f16bf75ad527dae3f6c495b12a0c&ali_trackid=1_0265f16bf75ad527dae3f6c495b12a0c&spm=a21wu.10013406-tw.0.0.
32. Wernick, D. G.; Pontrelli, S. P.; Pollock, A. W.; Liao, J. C., Sustainable biorefining in wastewater by engineered extreme alkaliphile Bacillus marmarensis. Sci Rep 2016, 6, 20224.
33. Choi, K. Y.; Wernick, D. G.; Tat, C. A.; Liao, J. C., Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab Eng 2014, 23, 53-61.
34. Choi, K.-Y.; Wernick, D. G.; Tat, C. A.; Liao, J. C. J. M. e., Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. 2014, 23, 53-61.
35. Ballesteros, I.; Negro, M. J.; Oliva, J. M.; Cabanas, A.; Manzanares, P.; Ballesteros, M., Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol 2006, 129-132, 496-508.
36. Boluda-Aguilar, M.; Garcia-Vidal, L.; Gonzalez-Castaneda Fdel, P.; Lopez-Gomez, A., Mandarin peel wastes pretreatment with steam explosion for bioethanol production. Bioresour Technol 2010, 101 (10), 3506-13.
37. Brownell, H. H.; Saddler, J. N., Steam-Explosion Pretreatment for Enzymatic-Hydrolysis. Biotechnology and Bioengineering 1984, 55-68.
38. Brownell, H. H.; Yu, E. K.; Saddler, J. N., Steam-explosion pretreatment of wood: Effect of chip size, acid, moisture content and pressure drop. Biotechnol Bioeng 1986, 28 (6), 792-801.
39. Chacha, N.; Toven, K.; Mtui, G.; Katima, J.; Mrema, G., STEAM PRETREATMENT OF PINE (Pinus patula) WOOD RESIDUE FOR THE PRODUCTION OF REDUCING SUGARS. Cellulose Chemistry and Technology 2011, 45 (7-8), 495-501.
40. Ooshima, H.; Aso, K.; Harano, Y.; Yamamoto, T., Microwave Treatment of Cellulosic Materials for Their Enzymatic-Hydrolysis. Biotechnol Lett 1984, 6 (5), 289-294.
41. Sridar, V., Microwave radiation as a catalyst for chemical reactions. Curr Sci India 1998, 74 (5), 446-450.
42. Sun, Y.; Cheng, J. Y., Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol 2002, 83 (1), 1-11.
43. Kitchaiya, P.; Intanakul, P.; Krairiksh, M., Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric-pressure. J Wood Chem Technol 2003, 23 (2), 217-225.
44. Martín, C.; López, Y.; Plasencia, Y.; Hernández, E., Characterisation of agricultural and agro-industrial residues as raw materials for ethanol production. Chemical and biochemical engineering quarterly 2006, 20 (4), 443-447.
45. Prasad, S.; Singh, A.; Joshi, H. C., Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recy 2007, 50 (1), 1-39.
46. Hu, Z. H.; Wen, Z. Y., Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J 2008, 38 (3), 369-378.
47. Sanchez, O. J.; Cardona, C. A., Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technol 2008, 99 (13), 5270-5295.
48. Mtui, G. Y. S., Recent advances in pretreatment of lignocellulosic wastes and production of value added products. Afr J Biotechnol 2009, 8 (8), 1398-1415.
49. Talebnia, F.; Karakashev, D.; Angelidaki, I., Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technol 2010, 101 (13), 4744-4753.
50. Ahring, B. K.; Licht, D.; Schmidt, A. S.; Sommer, P.; Thomsen, A. B., Production of ethanol from wet oxidised wheat straw by Thermoanaerobacter mathranii. Bioresource Technol 1999, 68 (1), 3-9.
51. Mosier, N.; Hendrickson, R.; Ho, N.; Sedlak, M.; Ladisch, M. R., Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 2005, 96 (18), 1986-93.
52. Saha, B. C.; Iten, L. B.; Cotta, M. A.; Wu, Y. V., Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 2005, 40 (12), 3693-3700.
53. Martin, C.; Klinke, H. B.; Thomsen, A. B., Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microb Tech 2007, 40 (3), 426-432.
54. Banerjee, S.; Sen, R.; Pandey, R. A.; Chakrabarti, T.; Satpute, D.; Giri, B. S.; Mudliar, S., Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass Bioenerg 2009, 33 (12), 1680-1686.
55. Pedersen, M.; Meyer, A. S., Influence of Substrate Particle Size and Wet Oxidation on Physical Surface Structures and Enzymatic Hydrolysis of Wheat Straw. Biotechnol Progr 2009, 25 (2), 399-408.
56. Cardona, C. A.; Quintero, J. A.; Paz, I. C., Production of bioethanol from sugarcane bagasse: Status and perspectives. Bioresour Technol 2010, 101 (13), 4754-66.
57. Alvira, P.; Tomas-Pejo, E.; Ballesteros, M.; Negro, M. J., Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technol 2010, 101 (13), 4851-4861.
58. Balat, M.; Balat, H.; Oz, C., Progress in bioethanol processing. Prog Energ Combust 2008, 34 (5), 551-573.
59. Hamelinck, C. N.; van Hooijdonk, G.; Faaij, A. P. C., Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenerg 2005, 28 (4), 384-410.
60. Taherzadeh, M. J.; Karimi, K., Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int J Mol Sci 2008, 9 (9), 1621-1651.
61. Wyman, C. E.; Dale, B. E.; Elander, R. T.; Holtzapple, M.; Ladisch, M. R.; Lee, Y. Y., Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresource Technol 2005, 96 (18), 2026-2032.
62. Yu, Q.; Zhuang, X. S.; Yuan, Z. H.; Wang, Q.; Qi, W.; Wang, W.; Zhang, Y.; Xu, J. L.; Xu, H. J., Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Bioresource Technol 2010, 101 (13), 4895-4899.
63. Xu, J.; Takakuwa, N.; Nogawa, M.; Okada, H.; Morikawa, Y., A third xylanase from Trichoderma reesei PC-3-7. Appl Microbiol Biot 1998, 49 (6), 718-724.
64. Park, Y. S.; Kang, S. W.; Lee, J. S.; Hong, S. I.; Kim, S. W., Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl Microbiol Biot 2002, 58 (6), 761-766.
65. Rabinovich, M. L.; Melnik, M. S.; Boloboba, A. V., Microbial cellulases (Review). Appl Biochem Micro+ 2002, 38 (4), 305-321.
66. Jorgensen, H.; Kutter, J. P.; Olsson, L., Separation and quantification of cellulases and hemicellulases by capillary electrophoresis. Anal Biochem 2003, 317 (1), 85-93.
67. Taherzadeh, M. J.; Karimi, K., Enzyme-Based Hydrolysis Processes for Ethanol from Lignocellulosic Materials: A Review. Bioresources 2007, 2 (4), 707-738.
68. Ferreira, S.; Duarte, A. P.; Ribeiro, M. H. L.; Queiroz, J. A.; Domingues, F. C., Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochem Eng J 2009, 45 (3), 192-200.
69. Hicks, D. B.; Liu, J.; Fujisawa, M.; Krulwich, T. A., F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. Biochim Biophys Acta 2010, 1797 (8), 1362-77.
70. Kropinski, A. M.; Hayward, M.; Agnew, M. D.; Jarrell, K. F., The genome of BCJA1c: a bacteriophage active against the alkaliphilic bacterium, Bacillus clarkii. Extremophiles 2005, 9 (2), 99-109.
71. Contesini, F. J.; de Melo, R. R.; Sato, H. H., An overview of Bacillus proteases: from production to application. Crit Rev Biotechnol 2018, 38 (3), 321-334.
72. Schallmey, M.; Singh, A.; Ward, O. P., Developments in the use of Bacillus species for industrial production. Can J Microbiol 2004, 50 (1), 1-17.
73. Yan, X.; Yu, H. J.; Hong, Q.; Li, S. P., Cre/lox system and PCR-based genome engineering in Bacillus subtilis. Appl Environ Microbiol 2008, 74 (17), 5556-62.
74. Itaya, M., Effective Cloning of Unmarked DNA Fragments in the Bacillus subtilis 168 Genome. Biosci Biotechnol Biochem 1999, 63 (3), 602-4.
75. Sa-Nogueira, I.; Mota, L. J., Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene. J Bacteriol 1997, 179 (5), 1598-608.
76. Fabret, C.; Ehrlich, S. D.; Noirot, P., A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol Microbiol 2002, 46 (1), 25-36.
77. Tanaka, K.; Henry, C. S.; Zinner, J. F.; Jolivet, E.; Cohoon, M. P.; Xia, F.; Bidnenko, V.; Ehrlich, S. D.; Stevens, R. L.; Noirot, P., Building the repertoire of dispensable chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale metabolic model. Nucleic Acids Res 2013, 41 (1), 687-99.
78. Shi, T.; Wang, G.; Wang, Z.; Fu, J.; Chen, T.; Zhao, X., Establishment of a markerless mutation delivery system in Bacillus subtilis stimulated by a double-strand break in the chromosome. PLoS One 2013, 8 (11), e81370.
79. Kovacs, A. T.; van Hartskamp, M.; Kuipers, O. P.; van Kranenburg, R., Genetic tool development for a new host for biotechnology, the thermotolerant bacterium Bacillus coagulans. Appl Environ Microbiol 2010, 76 (12), 4085-8.
80. Wang, Y.; Weng, J.; Waseem, R.; Yin, X.; Zhang, R.; Shen, Q., Bacillus subtilis genome editing using ssDNA with short homology regions. Nucleic Acids Res 2012, 40 (12), e91.
81. Breitling, R.; Sorokin, A. V.; Behnke, D., Temperature-inducible gene expression in Bacillus subtilis mediated by the cI857-encoded repressor of bacteriophage lambda. Gene 1990, 93 (1), 35-40.
82. Enyeart, P. J.; Chirieleison, S. M.; Dao, M. N.; Perutka, J.; Quandt, E. M.; Yao, J.; Whitt, J. T.; Keatinge-Clay, A. T.; Lambowitz, A. M.; Ellington, A. D., Generalized bacterial genome editing using mobile group II introns and Cre-lox. Mol Syst Biol 2013, 9, 685.
83. Blakely, G.; May, G.; McCulloch, R.; Arciszewska, L. K.; Burke, M.; Lovett, S. T.; Sherratt, D. J., Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell 1993, 75 (2), 351-61.
84. Sciochetti, S. A.; Piggot, P. J.; Sherratt, D. J.; Blakely, G., The ripX locus of Bacillus subtilis encodes a site-specific recombinase involved in proper chromosome partitioning. J Bacteriol 1999, 181 (19), 6053-62.
85. Bloor, A. E.; Cranenburgh, R. M., An efficient method of selectable marker gene excision by Xer recombination for gene replacement in bacterial chromosomes. Appl Environ Microbiol 2006, 72 (4), 2520-5.
86. Pohl, S.; Bhavsar, G.; Hulme, J.; Bloor, A. E.; Misirli, G.; Leckenby, M. W.; Radford, D. S.; Smith, W.; Wipat, A.; Williamson, E. D.; Harwood, C. R.; Cranenburgh, R. M., Proteomic analysis of Bacillus subtilis strains engineered for improved production of heterologous proteins. Proteomics 2013, 13 (22), 3298-308.
87. Zakataeva, N. P.; Nikitina, O. V.; Gronskiy, S. V.; Romanenkov, D. V.; Livshits, V. A., A simple method to introduce marker-free genetic modifications into the chromosome of naturally nontransformable Bacillus amyloliquefaciens strains. Appl Microbiol Biotechnol 2010, 85 (4), 1201-9.
88. Sheremet, A. S.; Gronskiy, S. V.; Akhmadyshin, R. A.; Novikova, A. E.; Livshits, V. A.; Shakulov, R. S.; Zakataeva, N. P., Enhancement of extracellular purine nucleoside accumulation by Bacillus strains through genetic modifications of genes involved in nucleoside export. J Ind Microbiol Biotechnol 2011, 38 (1), 65-70.
89. Denizci, A. A.; Kazan, D.; Erarslan, A., Bacillus marmarensis sp. nov., an alkaliphilic, protease-producing bacterium isolated from mushroom compost. Int J Syst Evol Microbiol 2010, 60 (Pt 7), 1590-4.
90. Abdel-Fattah, Y. R.; El-Enshasy, H. A.; Soliman, N. A.; El-Gendi, H., Bioprocess development for production of alkaline protease by Bacillus pseudofirmus Mn6 through statistical experimental designs. J Microbiol Biotechnol 2009, 19 (4), 378-86.
91. Nielsen, P.; Rainey, F. A.; Outtrup, H.; Priest, F. G.; Fritze, D. J. F. M. l., Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus. 1994, 117 (1), 61-65.
92. Rodgers, K. J.; Shiozawa, N., Misincorporation of amino acid analogues into proteins by biosynthesis. Int J Biochem Cell Biol 2008, 40 (8), 1452-66.
93. Rodgers, K. J.; Shiozawa, N. J. T. i. j. o. b.; biology, c., Misincorporation of amino acid analogues into proteins by biosynthesis. 2008, 40 (8), 1452-1466.
94. Shiio, I.; Ishii, K.; Yokozeki, K. J. A.; Chemistry, B., Production of L-tryptophan by 5-fluorotryptophan resistant mutants of Bacillus subtilis. 1973, 37 (9), 1991-2000.
95. AOKI, R.; MOMOSE, H.; KONDO, Y.; MURAMATSU, N.; TSUCHIYA, Y. J. T. J. o. G.; Microbiology, A., STUDIES ON INOSINE FERMENTATION-PRODUCTION OF INOSINE BY MUTANTS OF BACILLUS SUBTILIS: I. ISOLATION AND CHARACTERIZATION OF INOSINE-PRODUCING MUTANTS. 1963, 9 (4), 387-396.
96. Kurahashi, O.; Yokozeki, K.; Nakamori, S.; Yamanaka, S.; Enei, H. J. A.; chemistry, b., Production of L-tryptophan by 5-fluorotryptophan and indolmycin resistant mutants of Bacillus subtilis K. 1987, 51 (1), 231-235.
97. Hagino, H.; Nakayama, K. J. A.; Chemistry, B., The biosynthetic control in aromatic amino acid producing mutants of Corynebacterium glutamicum. 1975, 39 (2), 351-361.
98. Ikeda, M.; Katsumata, R. J. B., biotechnology,; biochemistry, Tryptophan production by transport mutants of Corynebacterium glutamicum. 1995, 59 (8), 1600-1602.
99. Delić, V.; Hopwood, D. A.; Friend, E. J. J. M. R. F.; Mutagenesis, M. M. o., Mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine (NTG) in Streptomyces coelicolor. 1970, 9 (2), 167-182.
100. Ito, M.; Nagane, M. J. B., biotechnology,; biochemistry, Improvement of the electro-transformation efficiency of facultatively alkaliphilic Bacillus pseudofirmus OF4 by high osmolarity and glycine treatment. 2001, 65 (12), 2773-2775.