研究生: |
李珮儀 LEE, PEI-YI |
---|---|
論文名稱: |
鋰靶加速器硼中子捕獲治療超熱中子束之射束整形體設計 The beam shaping assembly design of an accelerator-driven Li-target epithermal neutron beam |
指導教授: |
江祥輝
JIANG, SHIANG-HUEI |
口試委員: |
許榮鈞
SHEU, RONG-JIUN 徐椿壽 CHUI,CHEN-SHOU |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 鋰靶 、加速器 、硼中子捕獲治療 、射束整形體 |
外文關鍵詞: | Li-target, Accelerator, Boron Neutron Capture Therapy (BNCT), Beam shaping assembly |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了使硼中子捕獲治療能於醫院中建造、發展,本研究以鋰(7Li)做為靶材,利用加速器產生2.5 MeV質子與鋰靶作用來產生中子,並設計一射束整形體,用以產生高通量、高射束品質的超熱中子射源。
研究中使用蒙地卡羅程式MCNPX 2.7.0進行模擬計算,作用截面來自ENDF/B-VII.0資料庫。
首先探討以鋰(7Li)、鈹(9Be)做為靶材與質子作用,產生能量低、通量高的中子射束之可行性;模擬結果顯示要在快中子劑量符合IAEA要求的條件下,以鈹為靶材來產生高通量中子射束的困難度非常高。據此,本研究選用鋰做為加速器靶體,與低能質子作用以產生高通量中子源。
回顧其它7Li(p,n)7Be核反應的射束整形體設計,並利用空氣中、假體中射束品質因素來分析這些超熱中子射束,發現Montagnini等人於2002年發表的設計可提供接近IAEA要求的射束;為使其能在超熱中子通量、射束前向性和滲漏中子方面更加改進,於是參考該研究團隊的設計模型,並進行了射束整形體的幾何與材料修改,同時探討質子入射角度是否會對中子射束通量與品質造成影響。
最終的射束整形體設計,可產生高通量的超熱中子射束;於半小時的治療時間內,提供深度7.0公分內的腦腫瘤30 RBE-Gy以上的劑量。研究並發現,在相同的劑量表現前提下,大入射角度的質子射束,能產生較高通量的超熱中子射束,因而可降低所需的質子電流及靶體需承受的熱功率,提高鋰靶應用於加速器硼中子捕獲治療的競爭力。
1. International Atomic Energy Agency, Current status of neutron capture therapy, IAEA-TECODOC-1223, Vienna, 2001.
2. W.A.G. Sauerwein, et al., Neutron Capture Therapy: Principles and Applications, Springer-Verlag, New York, 2012.
3. M.B. Chadwick, et al., “ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology”, Nucl. Data Sheets, vol. 107, pp. 2931-3060, 2006.
4. R.E. White, P.H. Barker, and D.M.J. Lovelock, “Measurement of Nuclear Reaction Q-values with High Accuracy: 7Li(p,n)7Be”, Metrologia, vol. 21, pp. 193-199, 1985.
5. S. Takayanagi, et al., “Neutron threshold measurements in the reactions 9Be(p,n)9B, 10B(p,n)10C, 11B(p,n)11C”, Nucl. Phys., vol. 29, pp. 494-502, 1961.
6. N. Metropolis and S. Ulam, “The Monte Carlo method”, J. Am. Stat. Assoc., Vol. 44(247), pp. 335-341, 1949.
7. D.B. Pelowitz, et al., MCNPX user’s manual, Version. 2.7.0, Los Alamos report LA-CP-11-00438, 2011.
8. C.N. Clubertson, et al., “In-phantom characterization studies at the Birmingham Accelerator-Generated epithermal Neutron Source (BAGINS) BNCT facility”, Appl. Rad. And Iso., vol. 61, pp. 733-738, 2004.
9. J.C. Yanch, et al., “Accelerator-based epithermal neutron beam design for neutron capture therapy”, Med. Phys., vol. 19(3), pp. 709-721, 1992.
10. H. Tanaka, et al., “Characteristic comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy”, Nucl. Instrum. Meth. B, vol. 267, pp. 1970-1977, 2009.
11. B. Bayanov, V. Belov, and S. Taskaev, “Neutron producing target for accelerator based neutron capture therapy”, J. Phys. Conf. Ser., vol. 41, pp. 460-465, 2006.
12. J.T. Goorley, W.S. Kiger, and R.G. Zamenhof, “Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models”, Med. Phys., Vol. 29(2), pp. 145-156, 2002.
13. International Commission on Radiation Units and Measurements, Photon, electron, proton and neutron interaction data for body tissues, ICRU-46, Tech. Rep., 1992.
14. C.L. Lee, et al., “A Monte Carlo dosimetry-based evaluation of the 7Li(p,n)7Be reaction near threshold for accelerator boron neutron capture therapy”, Med. Phys., Vol. 27(1), pp. 192-202, 2000.
15. M.S. Herrera, et al., “Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT”, Appl. Rad. And Iso., Vol. 69, pp. 1870-1873, 2011.
16. R.G. Zamenhof, et al., “Boron neutron cature therapy for the treatment of cerebral gliomas. I: Theoretical evaluation of the efficacy of various neutron beams”, Med. Phys.,Vol. 2, pp. 47-60, 1975.
17. D.M. Minsky, A.J. Kreiner, and A.A. Valda, “AB-BNCT beam shaping assembly based on 7Li(p,n)7Be reaction optimization”, Appl. Rad. And Iso., Vol. 69, pp. 1668-1671, 2011.
18. D.A. Allen, T.D. Beynon, and S. Green, “Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy”, Med. Phys., Vol. 26(1), pp. 71-76, 1999.
19. D.A. Allen, et al., “Toward a final design for the Birmingham boron neutron capture therapy neutron beam”, Med. Phys., Vol. 26(1), pp. 77-82, 1999.
20. B. Montagnini, et al., “Spectrum shaping of accelerator-based neutron beams for BNCT”, Nucl. Instrum. Meth. A, Vol. 476, pp. 90-98, 2002.
21. W.S. Snyder, et al., “Estimates for absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom”, J. Nucl. Med. Suppl., Vol. 3, pp. 7-52, 1969.
22. H. Fukuda, et al., “Boron Neutron Capture Therapy of Malignant Melanoma Using 10B-Paraboronophenylalanine with Special Reference to Evaluation of Radiation Dose and Damage to the Normal Skin”, Radiat. Res., Vol. 138, pp. 435-442, 1994.
23. A.Z. Kiss, et al., “Measurements of relative thick target yields for PIGE analysis on light elements in the proton energy interval 2.4-4.2MeV”, J. Radioanal. Nucl. Ch., Vol. 89, pp. 123-141, 1985.
24. E. Forton, et al., “Overview of the IBA accelerator-based BNCT system”, Appl. Rad. And Iso., Vol. 67, pp. 262-265, 2009.
25. J.C. Yanch, X.L. Zhor, G.L. Brownell, “A Monte Carlo investigation of the dosimetric properties of monoenergetic neutron beams for neutron capture therapy”, Radiat. Res., Vol. 126, pp. 1-20, 1991.
26. 葉藍筠,「BNCT治療計畫程式THORplan在復發頭頸部腫瘤臨床試驗之經驗回饋」,國立清華大學,碩士論文,中華民國一百年
27. Y.H. Liu, et al., “Neutron spectra measurement and comparison of the HFR and THOR BNCT beams”, Appl. Rad. And Iso., Vol. 67, pp. 137-140, 2009.
28. K.M. Bushby, et al., “Centiles for adult head circumference”, Arch. Dis. Child., Vol. 76, pp. 1286-1287, 1992.