研究生: |
李易殷 Lee, Yi-Ying |
---|---|
論文名稱: |
運用啟動子-核糖體結合位庫之 基因電晶體規格設計 Genetic Transistor Design based on Specifications via Promoter-RBS Libraries |
指導教授: |
陳博現
Chen, Bor-Sen |
口試委員: |
陳博現
Chen, Bor-Sen 林俊良 Lin, Chun-Liang 吳謂勝 Wu, Wei-Sheng 李曉菁 Lee, Hsiao-Ching 林澤 Lin, Che |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 61 |
中文關鍵詞: | 合成生物學 、基因電路 、基因演算法 |
外文關鍵詞: | synthetic biology, genetic circuit, genetic algorithm |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,為了利用已鑑別出的啟動子-核糖體結合位元件的強度來做系統化的基因電路設計,我們建立了三種啟動子-核糖體結合位庫,即連續表現型啟動子-核糖體結合位庫、抑制子調控型啟動子-核糖體結合位庫及促進子調控型啟動子-核糖體結合位庫。利用輸入/輸出的特性以及外加誘導物濃度的調控,基因電晶體可以被設計擁有基因放大以及基因開關的功能,並且基因電晶體的各種設計規格可以藉由替換不同的啟動子-核糖體結合位元件以及調整誘導物的濃度來獲得。根據基因電晶體的動態模型,我們發展了一套基因電晶體的設計方法,這設計方法是利用以基因演算法為基礎的搜尋演算法從所相對應的啟動子-核糖體結合位庫找尋一個啟動子-核糖體結合位元件及誘導物濃度的集合來達成已規定的基因電晶體的輸入/輸出特性。此外,根據不同種類基因電晶體設計規格,一個基因電晶體的搜尋表格可以被建立,藉由這搜尋表格我們可以簡單地選擇合適的啟動子-核糖體結合位元件及誘導物濃度的集合來建構我們所想要的基因電晶體,這樣子可以節省很多在無謂的實驗試驗上的時間。最後,我們藉由運用啟動子-核糖體結合位庫設計所想要的基因電晶體線性放大器以及開關的功能來展現我們方法的實用性。
In this study, three kinds of promoter-RBS libraries, i.e., constitutive promoter-RBS library, repressor-regulated promoter-RBS library and activator-regulated promoter-RBS library, are constructed for the systematic genetic circuit design by identifying the kinetic strengths of promoter-RBS components. Based on the input/output (I/O) characteristics and concentrations of external inducers, the genetic transistor can be designed for genetic amplification or genetic switching. By the different selections of promoter-RBS components and regulations of inducer concentrations, the different design specifications of genetic transistor can be obtained. According to the dynamic model of genetic transistor, a design methodology of genetic transistor via GA-based searching algorithm is developed to search for a set of promoter-RBS components and concentrations of inducers from the corresponding promoter-RBS libraries to achieve a prescribed I/O characteristic of genetic transistor. Furthermore, according to design specifications of different kind of genetic transistors, a look-up table is built for genetic transistor design, from which we could easily select an adequate set of promoter-RBS components and concentrations of inducer. This will save much time on trial-and-error in experimental procedure for a genetic transistor with a desired I/O characteristic. Finally, we demonstrate the applicability of our methodology by designing genetic transistors respectively for a desired linear amplifier and a desired switching I/O response via in silico simulation based on promoter-RBS libraries.
1. Benner, S.A. and A.M. Sismour, Synthetic biology. Nat Rev Genet, 2005. 6(7): p. 533-543.
2. Gardner, T.S., C.R. Cantor, and J.J. Collins, Construction of a genetic toggle switch in Escherichia coli. Nature, 2000. 403(6767): p. 339-342.
3. Kobayashi, H., et al., Programmable cells: Interfacing natural and engineered gene networks. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(22): p. 8414-8419.
4. Atkinson, M.R., et al., Development of Genetic Circuitry Exhibiting Toggle Switch or Oscillatory Behavior in Escherichia coli. Cell, 2003. 113(5): p. 597-607.
5. Hasty, J., D. McMillen, and J.J. Collins, Engineered gene circuits. Nature, 2002. 420(6912): p. 224-230.
6. Elowitz, M.B. and S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature, 2000. 403(6767): p. 335-338.
7. Stricker, J., et al., A fast, robust and tunable synthetic gene oscillator. Nature, 2008. 456(7221): p. 516-519.
8. Danino, T., et al., A synchronized quorum of genetic clocks. Nature, 2010. 463(7279): p. 326-330.
9. Mondragón-Palomino, O., et al., Entrainment of a Population of Synthetic Genetic Oscillators. Science, 2011. 333(6047): p. 1315-1319.
10. Basu, S., et al., Spatiotemporal control of gene expression with pulse-generating networks. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(17): p. 6355-6360.
11. Voigt, C.A., Genetic parts to program bacteria. Current Opinion in Biotechnology, 2006. 17(5): p. 548-557.
12. Anderson, J.C., C.A. Voigt, and A.P. Arkin, Environmental signal integration by a modular AND gate. Mol Syst Biol, 2007. 3.
13. Tamsir, A., J.J. Tabor, and C.A. Voigt, Robust multicellular computing using genetically encoded NOR gates and chemical /`wires/'. Nature, 2011. 469(7329): p. 212-215.
14. Wang, B., et al., Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun, 2011. 2: p. 508.
15. Khalil, A.S. and J.J. Collins, Synthetic biology: applications come of age. Nat Rev Genet, 2010. 11(5): p. 367-379.
16. Sohka, T., et al., An externally tunable bacterial band-pass filter. Proceedings of the National Academy of Sciences, 2009. 106(25): p. 10135-10140.
17. Kampf, M.M., et al., Rewiring and dosing of systems modules as a design approach for synthetic mammalian signaling networks. Molecular BioSystems, 2012. 8(6): p. 1824-1832.
18. Basu, S., et al., A synthetic multicellular system for programmed pattern formation. Nature, 2005. 434(7037): p. 1130-1134.
19. Tabor, J.J., et al., A Synthetic Genetic Edge Detection Program. Cell, 2009. 137(7): p. 1272-1281.
20. Tabor, J.J., A. Levskaya, and C.A. Voigt, Multichromatic Control of Gene Expression in Escherichia coli. Journal of Molecular Biology, 2011. 405(2): p. 315-324.
21. Callura, J.M., C.R. Cantor, and J.J. Collins, Genetic switchboard for synthetic biology applications. Proceedings of the National Academy of Sciences, 2012. 109(15): p. 5850-5855.
22. Gianna De, R. and S.W. Davies, A genetic circuit amplifier: design and simulation. NanoBioscience, IEEE Transactions on, 2003. 2(4): p. 239-246.
23. Nistala, G., et al., A modular positive feedback-based gene amplifier. Journal of Biological Engineering, 2010. 4(1): p. 1-8.
24. Martineau, R.L., V. Stout, and B.C. Towe, Optical tracking of a stress-responsive gene amplifier applied to cell-based biosensing and the study of synthetic architectures. Biosensors and Bioelectronics, 2010. 25(8): p. 1881-1888.
25. Deans, T.L., C.R. Cantor, and J.J. Collins, A Tunable Genetic Switch Based on RNAi and Repressor Proteins for Regulating Gene Expression in Mammalian Cells. Cell, 2007. 130(2): p. 363-372.
26. Canton, B., A. Labno, and D. Endy, Refinement and standardization of synthetic biological parts and devices. Nat Biotech, 2008. 26(7): p. 787-793.
27. Shetty, R., D. Endy, and T. Knight, Engineering BioBrick vectors from BioBrick parts. Journal of Biological Engineering, 2008. 2(1): p. 5.
28. Johansson, R., System Modeling & Identification. 1993: Prentice-Hall, Inc.
29. Kelly, J., et al., Measuring the activity of BioBrick promoters using an in vivo reference standard. Journal of Biological Engineering, 2009. 3(1): p. 4.
30. Sneppen, K. and G. Zocchi, Physics in Molecular Biology. 2005.
31. Leveau, J.H.J. and S.E. Lindow, Predictive and Interpretive Simulation of Green Fluorescent Protein Expression in Reporter Bacteria. Journal of Bacteriology, 2001. 183(23): p. 6752-6762.
32. Wu, C.-H., H.-C. Lee, and B.-S. Chen, Robust synthetic gene network design via library-based search method. Bioinformatics, 2011. 27(19): p. 2700-2706.
33. Alon, U., An Introduction to Systems Biology: Design Principles of Biological Circuits. 2006: Chapman & Hall/CRC.
34. Sneppen, K., S. Krishna, and S. Semsey, Simplified Models of Biological Networks. Annual Review of Biophysics, 2010. 39(1): p. 43-59.
35. Wu, C.-H., W. Zhang, and B.-S. Chen, Multiobjective H2/H∞ synthetic gene network design based on promoter libraries. Mathematical Biosciences, 2011. 233(2): p. 111-125.
36. Neamen, D.A., Microelectronics: Circuit Analysis and Design. 2007: McGraw-Hill.
37. Varadarajan, P.A. and D. Del Vecchio, Design and Characterization of a Three-terminal Transcriptional Device Through Polymerase Per Second. NanoBioscience, IEEE Transactions on, 2009. 8(3): p. 281-289.
38. Chen, B.-S., et al., Robust model matching design methodology for a stochastic synthetic gene network. Mathematical Biosciences, 2011. 230(1): p. 23-36.
39. Chen, B.-S. and C.-H. Wu, A systematic design method for robust synthetic biology to satisfy design specifications. BMC Systems Biology, 2009. 3(1): p. 66.
40. Rodrigo, G., J. Carrera, and A. Jaramillo, Computational design of synthetic regulatory networks from a genetic library to characterize the designability of dynamical behaviors. Nucleic Acids Research, 2011. 39(20): p. e138.
41. Mondragon-Palomino, O., et al., Entrainment of a Population of Synthetic Genetic Oscillators. Science, 2011. 333(6047): p. 1315-1319.
42. Tuttle, L.M., et al., Model-Driven Designs of an Oscillating Gene Network. Biophysical Journal, 2005. 89(6): p. 3873-3883.
43. Purcell, O., et al., A Multi-Functional Synthetic Gene Network: A Frequency Multiplier, Oscillator and Switch. PLoS ONE, 2011. 6(2): p. e16140.
44. Rey, O., et al., Amino Acid-stimulated Ca2+ Oscillations Produced by the Ca2+-sensing Receptor Are Mediated by a Phospholipase C/Inositol 1,4,5-Trisphosphate-independent Pathway That Requires G12, Rho, Filamin-A, and the Actin Cytoskeleton. Journal of Biological Chemistry, 2005. 280(24): p. 22875-22882.
45. Di Capite, J., S.W. Ng, and A.B. Parekh, Decoding of Cytoplasmic Ca2+ Oscillations through the Spatial Signature Drives Gene Expression. Current Biology, 2009. 19(10): p. 853-858.
46. Taylor, S.R., et al., Sensitivity Measures for Oscillating Systems: Application to Mammalian Circadian Gene Network. Automatic Control, IEEE Transactions on, 2008. 53(Special Issue): p. 177-188.
47. Cuero, R., J. Lilly, and D.S. McKay, Constructed molecular sensor to enhance metal detection by bacterial ribosomal switch–ion channel protein interaction. Journal of Biotechnology, 2012. 158(1–2): p. 1-7.
48. Albano, C.R., et al., Quantitative measurement of green fluorescent protein expression. Biotechnology Techniques, 1996. 10(12): p. 953-958.
49. Leveau, J.H. and S.E. Lindow, Predictive and interpretive simulation of green fluorescent protein expression in reporter bacteria. J Bacteriol, 2001. 183(23): p. 6752-62.