研究生: |
楊愷潔 Yang, Kai-Chieh |
---|---|
論文名稱: |
探討分子內與分子間之掌性效應對於掌性嵌段共聚物自組裝行為的影響 Effects of Intra- and Inter-Chain Chiral Interactions on Self-Assembly of Chiral Block Copolymers |
指導教授: |
何榮銘
Ho, Rong-Ming |
口試委員: |
許千樹
Hsu, Chain-Shu 蔣酉旺 Chiang, Yeo-Wan 郭紹偉 Kuo, Hiao-Wei 蔡敬誠 Tsai, Jing-Cherng 陳信龍 Chen, Hsin-Lung |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 199 |
中文關鍵詞: | 掌性作用力 、雙嵌段共聚物 、自組裝 、構形不對稱性 、棍-棍作用力 |
外文關鍵詞: | chirality effect, block copolymer, self-assembly, conformational asymmetry, rod-rod interaction |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用簡單化學合成之分子設計概念,由掌性分子組成之掌性鏈段之嵌段共聚物 (chiral block copolymer)為材料,探討掌性作用力與其自組裝建構之奈米結構之相依性。本實驗設計以聚苯乙烯-聚左旋乳酸(polystyrene-block-poly(L-lactide)),聚苯乙烯-聚右旋乳酸polystyrene-block-poly(D-lactide))為材料,探討掌性作用力對自組裝相行為之影響。首先,在較弱的相分離強度且在聚苯乙烯組成之體積分率高於聚左旋乳酸時,雙螺旋二十四面體(double gyroid),以及奈米螺旋結構(helix)可以分別被形成。另外藉由混摻少量、小分子量之聚左旋乳酸均聚物於雙嵌段共聚物中,可使雙嵌段共聚物自組裝成雙鑽石結構 (double diamond)。此三種相分離結構之材料具有相似組成,並藉由圓二色光譜儀(electronic circular dichroism)之測定推論其具有相似分子掌性 (molecular chirality)。在相似分子掌性的條件下,利用紅外光圓偏振二色光譜儀(vibrational circular dichroism)進一步探討分子內與分子間掌性作用力對三種相分離結構之影響,發現其三種自組裝之結構具有相異之結構掌性,且結構掌性對光學訊號具有放大之效果。
由於聚左旋乳酸具有螺旋鏈構形,因此具有類棍狀特性,和相當柔軟之聚苯乙烯組成之雙嵌段共聚物具有構形之不對稱性,可視為半堅硬-柔曲(semiflexible rod-coil)之雙嵌段共聚物。在中等的相分離強度且材料組成之聚左旋乳酸體積分率高於聚苯乙烯時,棍狀構形所造成之類液晶排列行為(rod-rod interaction),對於自組裝之影響遠大於組成不對稱性(compositional asymmetry),唯一形成奈米層板結構。除此之外,在高的相分離強度下,聚苯乙烯-聚左旋乳酸在微觀相分離時,構形不對稱性(conformational asymmetry)形成傾向堅硬鏈段(聚左旋乳酸)之曲率,與分子間與分子內掌性作用力(chirality effect)的協調下,使奈米螺旋結構於相圖中的微觀相區間拓寬至跨越組成對稱點。另外,在高的相分離強度,高聚左旋乳酸體積分率之相區間,發現波動型層板結構之形成。此波動型層板結構同時具有兩種形式之波動。我們推論,其中較小週期之異相型波動,源自於組成之不對稱性,形成傾向堅硬鏈段(聚左旋乳酸)之曲率;而較大週期之同相型波動,則源自於分子間與分子內掌性作用力所誘發之扭轉和位移機制(twisting and shifting),形成自組裝結構之曲率。此波動型層板結構之發現與自洽場理論的模擬結果相符。本實驗證實半堅硬-柔曲之雙嵌段共聚物其自組裝之結果為上作用力之協同效應,且確立掌性雙嵌段共聚物之不對稱相圖。
自組裝過程中之上述作用力之協同效應可以藉由動力學控制的方式進一步研討。聚左旋乳酸體積分率高於聚苯乙烯之材料,在快速的溶劑揮發條件下,具有類棍狀特性之聚左旋乳酸傾向形成類液晶排列之雙層層板結構,結合介面以及層板間堆疊之掌性立體障礙,導致雙層層板堆疊時產生扭轉和彎曲(twisting and bending) 之自發機制,自組裝形成扭曲之多層層板三級結構(multilayer lamellae),且同時產生同心圓(concentric lamellar)或者是瑞士捲(roll-cake)般的型態。此結構之形態為動力學控制之暫穩態,而其中瑞士捲型態具有結構掌性,指出動力學控制之自組裝與各層級掌性作用力之傳遞之相依性。
除了聚苯乙烯-具左旋乳酸之外,藉由分子設計利用聚-N-取代甘氨酸(peptoid)為主體,系統性探討側鏈及主鏈掌性傳遞效應,控制其自組裝形成具備掌性之奈米結構。聚-N-取代甘氨酸高分子以N-C鍵為主鏈,相對於C-C鍵為主鏈之高分子有更旋轉能量障礙,因而使其具有較長之高分子鏈堅硬長度。藉由側鏈掌性官能基團的設計,本實驗進一步利用圓二色光譜儀,紅外光圓偏振二色光譜儀探討聚-N-取代甘氨酸高分子各層級掌性傳遞效應,並結合及中子散射(small angle neutron scattering)分析,探討其螺旋鏈段構形。研究發現,聚-N-取代甘氨酸高分子不符合單一掌性傳遞的機制,指出掌性傳遞機制值得更深入進行研討。
最後,本研究藉由合成設計,希望結合自組裝之研究和模板化無電電鍍的技術,製備奈米螺旋金陣列。本實驗設計以硫醇鍵作為以聚苯乙烯-聚左旋乳酸之兩鏈段連接點(PS-SS-PLLA),藉由掌性傳遞的機制,誘導硫醇鍵在雙嵌段共聚物自組裝形成奈米螺旋結構的同時行成螺旋排列。進一步將聚左旋乳酸水解後,即可得到具螺旋排列之硫醇鍵之奈米螺旋高分子模板。利用硫醇鍵和奈米金相互吸引的特性將奈米金還原於硫醇鍵上,即可製備奈米螺旋金陣列,預期將會有特殊的光學應用價值。
Herein, we aim to examine the phase behaviors of self-assembled chiral block copolymers (BCPs*) for generalization of the chirality effects on self-assembly at various compositions under different segregation strengths. Enantiomeric polylactide-based BCPs*, polystyrene-b-poly(L-lactide) (PS-PLLA) and polystyrene-b- poly(D-lactide) (PS-PDLA), composed of achiral PS and chiral polylactide were designed and synthesized for examination of the chirality effects on self-assembly. As found before, for the PS-PLLA with volume fractions ranging from 0.30 to 0.40, self-assembled double gyroid phase (DG) and helical phase (H*) could be obtained in weak and intermediate segregation regions, respectively. The formation of the H* is attributed to the chirality effects on self-assembly, giving the twisting and bending of the microphase-separated domain with cylindrical curvature due to compositional asymmetry. Significant enhancement of vibrational circular dichroism (VCD) signals could be found in the H* from microphase separation due to the formation of mesoscale (hierarchical) chirality (H*). Interestingly, a recognizable enhancement on the VCD signal of the DG as compared to the disorder phase can also be identified, suggesting the formation of a chiral DG. By contrast, with slightly introducing low molecular weight chiral polylactide for blending, a double diamond phase (DD) with a pair of achiral networks was found to give the VCD signal approximately equal to the disorder one. Note that the ones with DG, DD and disorder phase at equivalent volume fraction and molecular weight possess nearly identical optical activity from constituted chiral entities, as evidenced by electronic circular dichroism (ECD). Those results implicitly reflect that the VCD amplification in the DG is intrinsically attributed to the bias on the twisting degree of helical polymer chains between constituted gyroid networks.
Owing to the conformational asymmetry between two constituted blocks in the PS-PLLA, giving the character of semiflexible rod-coil block copolymer, it is intuitive to expect the asymmetric phase diagram for the PS-PLLA. PLLA-rich PS-PLLAs were thus synthesized for examination of the phase behaviors through a low-conversion synthetic approach. Apparent asymmetry in the phase diagram of the PS-PLLA can be found but only lamellar phase (L) forms in the composition region of PLLA volume fraction up to 0.7. As a result, we speculate that the semiflexible rod PLLA in the PLLA-rich fraction gives rise to liquid crystalline-like character due to rod-rod interaction that overwhelms the effect of conformational asymmetry. With the increase of the segregation strength, the effects of conformational asymmetry and chirality can be enhanced, giving interfacial curvature toward the PLLA blocks with the twisting and shifting of PLLA cylindrical microdomain. Consequently, an enlargement of the H* forming window can be found in the composition window from 0.3 to 0.55 crossing over the composition symmetry. Moreover, in the strong segregation region, we found an interesting undulation mechanism for the forming L at which two undulation modes can be observed: out-phase undulation from the formation of interfacial curvature due to conformational asymmetry effect and in-phase undulation from the cholesteric twist ordering due to chirality effects. Obviously, there are synergetic effects of rod-rod interaction, conformational asymmetry and chirality under strong segregation strength for the self-assembly of chiral block copolymers.
To further examine the synergetic effects on self-assembly, we aim to kinetically control the self-assembly of PLLA-rich PS-PLLAs. Through controlled self-assembly by tuning the evaporation rate for self-assembly from solution, spiral hierarchical superstructures were found in the self-assembly of PLLA-rich PS-PLLA with PLLA volume fraction approximately nearby 0.7. Consequently, smectic liquid crystal-like bilayer sandwiched with PLLA and PS microdomains can be formed. Owing to twisting and bending due to chiral cholesteric liquid-crystal-like force field combined with steric hindrance at chiral interface, the forming bilayers (twisted ribbon) will develop into either concentric lamellar texture from scrolling or roll-cake textures from spiraling. Those results demonstrate that the rod-rod interaction and the chirality effect can be sufficiently coordinated through kinetically controlled self-assembly. Note that the forming spiral superstructures are attributed to the kinetically trapped metastable condition with local minimum of Gibbs free energy, indicating that the effects of chirality on BCP self-assembly should be strongly dependent upon the kinetic paths for morphological development through chirality transfer at different length scales.
In contrast to the PS-PLLA, we are expecting that chiral segment with higher persistence length might give larger conformational asymmetry effect on self-assembly. Polypeptoid with chiral centers in the main chain are expected to have higher persistence length, arising from higher rotational barrier of amide group, as compared to ester group in polylactide-containing system. Notably, polypepotoid can be synthesized to give side-chain and main-chain chirality; herein, we aim to carry out systematic comparison between main-chain and side-chain chirality effects on BCP self-assembly. As found, the backbone helical conformation of polypeptoids appears as the same handedness regardless of the helical sense of the chiral center, different to the homochiral evolution from molecular to conformational chirality in the polylactide-based BCPs*. Moreover, the degree of helicity for the polypeptoids examined can be varied by surrounding environment. Those results indicate that the homochiral evolution in the self-assembly of BCPs* remains as an open question.
Recently, the chiroptics of helix-arranged Au nanoparticles has attracted much attention due to its novel optical activities such as enhancing surface plasmonic resonance (SPR). Herein, to exploit the applications of using the self-assembled polylactide-containing BCPs* with controlled helicity, BCPs* with thiol junction (PS-ss-PLLA) was synthesized. By taking advantage of induced chirality for those thiol junctions, it is expected to give the thiol junction preferentially arranged in a one-handed helical array at the microphase-separated interface. After degeneration of polylactide, nanoporous polymer materials with thiol-decorated nanochannels can be prepared on the vitrified PS surface, giving a chiral template for association of reduced gold from electroless plating. Consequently, gold nanoparticles arranged in a helical contour with specific handedness can be fabricated as a monolith for chiroptical applications.
1. Lehn, J.-M., Supramolecular Chemistry: Receptors, Catalysts, and Carriers. Science 1985, 227 (4689), 849.
2. Whitesides, G. M.; Grzybowski, B., Self-Assembly at All Scales. Science 2002, 295 (5564), 2418.
3. Whitesides, G. M.; Boncheva, M., Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proceedings of the National Academy of Sciences 2002, 99 (8), 4769.
4. Petsko, G. A.; Ringe, D., Protein structure and function. New Science Press: 2004.
5. Mai, Y.; Eisenberg, A., Self-assembly of block copolymers. Chemical Society Reviews 2012, 41 (18), 5969-5985.
6. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D., Periodic area-minimizing surfaces in block copolymers. Nature 1988, 334 (6183), 598-601.
7. Matsen, M. W.; Bates, F. S., Origins of Complex Self-Assembly in Block Copolymers. Macromolecules 1996, 29 (23), 7641-7644.
8. Bates, F. S.; Fredrickson, G., Block copolymers-designer soft materials. Physics today 1999, 52, 32.
9. Bates, F. S.; Fredrickson, G. H., Block Copolymer Thermodynamics: Theory and Experiment. Annual Review of Physical Chemistry 1990, 41 (1), 525-557.
10. Shen, H.; Eisenberg, A., Morphological Phase Diagram for a Ternary System of Block Copolymer PS310-b-PAA52/Dioxane/H2O. The Journal of Physical Chemistry B 1999, 103 (44), 9473-9487.
11. Discher, D. E.; Eisenberg, A., Polymer Vesicles. Science 2002, 297 (5583), 967.
12. Li, L.; Raghupathi, K.; Song, C.; Prasad, P.; Thayumanavan, S., Self-assembly of random copolymers. Chemical Communications 2014, 50 (88), 13417-13432.
13. Chen, J. T.; Thomas, E. L.; Ober, C. K.; Hwang, S. S., Zigzag Morphology of a Poly(styrene-b-hexyl isocyanate) Rod-Coil Block Copolymer. Macromolecules 1995, 28 (5), 1688-1697.
14. Müller, M.; Schick, M., Ordered Phases in Rod−Coil Diblock Copolymers. Macromolecules 1996, 29 (27), 8900-8903.
15. Jenekhe, S. A.; Chen, X. L., Self-Assembled Aggregates of Rod-Coil Block Copolymers and Their Solubilization and Encapsulation of Fullerenes. Science 1998, 279 (5358), 1903-1907.
16. Jenekhe, S. A.; Chen, X. L., Self-Assembly of Ordered Microporous Materials from Rod-Coil Block Copolymers. Science 1999, 283 (5400), 372-375.
17. Sary, N.; Rubatat, L.; Brochon, C.; Hadziioannou, G.; Ruokolainen, J.; Mezzenga, R., Self-Assembly of Poly(diethylhexyloxy-p-phenylenevinylene)-b-poly(4-vinylpyridine) Rod−Coil Block Copolymer Systems. Macromolecules 2007, 40 (19), 6990-6997.
18. Olsen, B. D.; Segalman, R. A., Self-assembly of rod–coil block copolymers. Materials Science and Engineering: R: Reports 2008, 62 (2), 37-66.
19. Wang, Q., Theory and simulation of the self-assembly of rod–coil block copolymer melts: recent progress. Soft Matter 2011, 7 (8), 3711-3716.
20. Song, W.; Tang, P.; Zhang, H.; Yang, Y.; Shi, A.-C., New Numerical Implementation of Self-Consistent Field Theory for Semiflexible Polymers. Macromolecules 2009, 42 (16), 6300-6309.
21. Kumar, N. A.; Ganesan, V., Communication: Self-assembly of semiflexible-flexible block copolymers. The Journal of Chemical Physics 2012, 136 (10), 101101.
22. Gao, J.; Tang, P.; Yang, Y., Non-lamellae structures of coil–semiflexible diblock copolymers. Soft Matter 2013, 9 (1), 69-81.
23. Bates, F. S.; Fredrickson, G. H., Conformational asymmetry and polymer-polymer thermodynamics. Macromolecules 1994, 27 (4), 1065-1067.
24. Bates, F. S.; Schulz, M. F.; Khandpur, A. K.; Förster, S.; Rosedale, J. H.; Almdal, K.; Mortensen, K., Fluctuations, conformational asymmetry and block copolymer phase behaviour. Faraday Discussions 1994, 98, 7-18.
25. Matsen, M.; Bates, F. S., Conformationally asymmetric block copolymers. Journal of Polymer Science Part B: Polymer Physics 1997, 35 (6), 945-952.
26. Chen, J. T.; Thomas, E. L.; Ober, C. K.; Mao, G.-P., Self-Assembled Smectic Phases in Rod-Coil Block Copolymers. Science 1996, 273 (5273), 343-346.
27. Structure and Thermodynamics of Weakly Segregated Rod−Coil Block Copolymers. Macromolecules 2005, 38 (24), 10127-10137.
28. Olsen, B. D.; Segalman, R. A., Nonlamellar phases in asymmetric rod− coil block copolymers at increased segregation strengths. Macromolecules 2007, 40 (19), 6922-6929.
29. Kirshenbaum, K.; Barron, A. E.; Goldsmith, R. A.; Armand, P.; Bradley, E. K.; Truong, K. T. V.; Dill, K. A.; Cohen, F. E.; Zuckermann, R. N., Sequence-specific polypeptoids: A diverse family of heteropolymers with stable secondary structure. Proceedings of the National Academy of Sciences 1998, 95 (8), 4303-4308.
30. Murnen, H. K.; Rosales, A. M.; Jaworski, J. N.; Segalman, R. A.; Zuckermann, R. N., Hierarchical Self-Assembly of a Biomimetic Diblock Copolypeptoid into Homochiral Superhelices. Journal of the American Chemical Society 2010, 132 (45), 16112-16119.
31. Rosales, A. M.; Murnen, H. K.; Kline, S. R.; Zuckermann, R. N.; Segalman, R. A., Determination of the persistence length of helical and non-helical polypeptoids in solution. Soft Matter 2012, 8 (13), 3673-3680.
32. Davidson, E. C.; Rosales, A. M.; Patterson, A. L.; Russ, B.; Yu, B.; Zuckermann, R. N.; Segalman, R. A., Impact of Helical Chain Shape in Sequence-Defined Polymers on Polypeptoid Block Copolymer Self-Assembly. Macromolecules 2018, 51 (5), 2089-2098.
33. Yu, B.; Danielsen, S. P. O.; Patterson, A. L.; Davidson, E. C.; Segalman, R. A., Effects of Helical Chain Shape on Lamellae-Forming Block Copolymer Self-Assembly. Macromolecules 2019, 52 (6), 2560-2568.
34. Hanan, G. S.; Lehn, J.-M.; Kyritsakas, N.; Fischer, J., Molecular helicity: a general approach for helicity induction in a polyheterocyclic molecular strand. Journal of the Chemical Society, Chemical Communications 1995, (7), 765-766.
35. Krappe, U.; Stadler, R.; Voigt-Martin, I., Chiral Assembly in Amorphous ABC Triblock Copolymers. Formation of a Helical Morphology in Polystyrene-block-polybutadiene-block-poly(methyl methacrylate) Block Copolymers. Macromolecules 1995, 28 (13), 4558-4561.
36. Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G., Solvophobically Driven Folding of Nonbiological Oligomers. Science 1997, 277 (5333), 1793-1796.
37. Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M., Helical Superstructures from Charged Poly(styrene)-Poly(isocyanodipeptide) Block Copolymers. Science 1998, 280 (5368), 1427-1430.
38. Yashima, E.; Ousaka, N.; Taura, D.; Shimomura, K.; Ikai, T.; Maeda, K., Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chemical Reviews 2016, 116 (22), 13752-13990.
39. Nakashima, N.; Asakuma, S.; Kunitake, T., Optical microscopic study of helical superstructures of chiral bilayer membranes. Journal of the American Chemical Society 1985, 107 (2), 509-510.
40. Lin, T.-F.; Ho, R.-M.; Sung, C.-H.; Hsu, C.-S., Helical Morphologies of Thermotropic Liquid-Crystalline Chiral Schiff-Based Rod−Coil Amphiphiles. Chemistry of Materials 2006, 18 (23), 5510-5519.
41. Palmans, A. R. A.; Meijer, E. W., Amplification of Chirality in Dynamic Supramolecular Aggregates. Angewandte Chemie International Edition 2007, 46 (47), 8948-8968.
42. Aida, T.; Meijer, E. W.; Stupp, S. I., Functional Supramolecular Polymers. Science 2012, 335 (6070), 813-817.
43. Chiang, Y.-W.; Ho, R.-M.; Ko, B.-T.; Lin, C.-C., Springlike Nanohelical Structures in Chiral Block Copolymers. Angewandte Chemie International Edition 2005, 44 (48), 7969-7972.
44. Ho, R.-M.; Chen, C.-K.; Chiang, Y.-W.; Ko, B.-T.; Lin, C.-C., Tubular Nanostructures from Degradable Core–Shell Cylinder Microstructures in Chiral Diblock Copolymers. Advanced Materials 2006, 18 (18), 2355-2358.
45. Ho, R.-M.; Chen, C.-K.; Chiang, Y.-W., Novel Nanostructures from Self-Assembly of Chiral Block Copolymers. Macromolecular Rapid Communications 2009, 30 (17), 1439-1456.
46. Ho, R.-M.; Chiang, Y.-W.; Chen, C.-K.; Wang, H.-W.; Hasegawa, H.; Akasaka, S.; Thomas, E. L.; Burger, C.; Hsiao, B. S., Block Copolymers with a Twist. Journal of the American Chemical Society 2009, 131 (51), 18533-18542.
47. Fujiki, M., Optically Active Polysilylenes: State-of-the-Art Chiroptical Polymers. Macromolecular Rapid Communications 2001, 22 (8), 539-563.
48. Ho, R.-M.; Li, M.-C.; Lin, S.-C.; Wang, H.-F.; Lee, Y.-D.; Hasegawa, H.; Thomas, E. L., Transfer of Chirality from Molecule to Phase in Self-Assembled Chiral Block Copolymers. Journal of the American Chemical Society 2012, 134 (26), 10974-10986.
49. Wen, T.; Wang, H.-F.; Li, M.-C.; Ho, R.-M., Homochiral Evolution in Self-Assembled Chiral Polymers and Block Copolymers. Accounts of Chemical Research 2017, 50 (4), 1011-1021.
50. Hsueh, H.-Y.; Ho, R.-M., Bicontinuous Ceramics with High Surface Area from Block Copolymer Templates. Langmuir 2012, 28 (22), 8518-8529.
51. Hsueh, H.-Y.; Yao, C.-T.; Ho, R.-M., Well-ordered nanohybrids and nanoporous materials from gyroid block copolymer templates. Chemical Society Reviews 2015, 44 (7), 1974-2018.
52. Chung, T.-M.; Wang, H.-F.; Lin, T.; Chiang, Y.-W.; Chen, Y.-C.; Ko, B.-T.; Ho, R.-M., Helical Phase Driven by Solvent Evaporation in Self-Assembly of Poly(4-vinylpyridine)-block-poly(l-lactide) Chiral Block Copolymers. Macromolecules 2012, 45 (24), 9727-9733.
53. Wang, H. F.; Yang, K. C.; Hsu, W. C.; Lee, J. Y.; Hsu, J. T.; Grason, G. M.; Thomas, E. L.; Tsai, J. C.; Ho, R. M., Generalizing the effects of chirality on block copolymer assembly. Proceedings of the National Academy of Sciences of the United States of America 2019, 116 (10), 4080-9.
54. Wen, T.; Ho, R.-M., Effects of the Chiral Interface and Orientation-Dependent Segmental Interactions on Twisting of Self-Assembled Block Copolymers. ACS Macro Letters 2017, 6 (4), 370-374.
55. Helfrich, W., Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung C 1973, 28 (11-12), 693-703.
56. Deuling, H.; Helfrich, W., The curvature elasticity of fluid membranes: a catalogue of vesicle shapes. Journal de Physique 1976, 37 (11), 1335-1345.
57. Zhong-can, Ou-Yang, Ji-xing, L., Helical structures of tilted chiral lipid bilayers viewed as cholesteric liquid crystals. Physical Review Letters 1990, 65 (13), 1679-1682.
58. Ou-Yang, Z.-c.; Liu, J., Theory of helical structures of tilted chiral lipid bilayers. Physical Review A 1991, 43 (12), 6826-6836.
59. Grason, G. M., Chirality Transfer in Block Copolymer Melts: Emerging Concepts. ACS Macro Letters 2015, 4 (5), 526-532.
60. Zhao, W.; Russell, T. P.; Grason, G. M., Chirality in Block Copolymer Melts: Mesoscopic Helicity from Intersegment Twist. Physical Review Letters 2013, 110 (5), 058301.
61. Foerster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W., Complex Phase Behavior of Polyisoprene-Polystyrene Diblock Copolymers Near the Order-Disorder Transition. Macromolecules 1994, 27 (23), 6922-6935.
62. Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K., Epitaxial Relationship for Hexagonal-to-Cubic Phase Transition in a Book Copolymer Mixture. Physical Review Letters 1994, 73 (1), 86-89.
63. Hajduk, D. A.; Takenouchi, H.; Hillmyer, M. A.; Bates, F. S.; Vigild, M. E.; Almdal, K., Stability of the Perforated Layer (PL) Phase in Diblock Copolymer Melts. Macromolecules 1997, 30 (13), 3788-3795.
64. Chastek, T. Q.; Lodge, T. P., Measurement of Gyroid Single Grain Growth Rates in Block Copolymer Solutions. Macromolecules 2003, 36 (20), 7672-7680.
65. Chen, C.-K.; Hsueh, H.-Y.; Chiang, Y.-W.; Ho, R.-M.; Akasaka, S.; Hasegawa, H., Single Helix to Double Gyroid in Chiral Block Copolymers. Macromolecules 2010, 43 (20), 8637-8644.
66. Wang, H.-F.; Yu, L.-H.; Wang, X.-B.; Ho, R.-M., A Facile Method To Fabricate Double Gyroid as a Polymer Template for Nanohybrids. Macromolecules 2014, 47 (22), 7993-8001.
67. Hashimoto, T.; Tanaka, H.; Hasegawa, H., Ordered structure in mixtures of a block copolymer and homopolymers. 2. Effects of molecular weights of homopolymers. Macromolecules 1990, 23 (20), 4378-4386.
68. Tanaka, H.; Hasegawa, H.; Hashimoto, T., Ordered structure in mixtures of a block copolymer and homopolymers. 1. Solubilization of low molecular weight homopolymers. Macromolecules 1991, 24 (1), 240-251.
69. Koizumi, S.; Hasegawa, H.; Hashimoto, T., Ordered Structures of Block Copolymer/Homopolymer Mixtures. 5. Interplay of Macro- and Microphase Transitions. Macromolecules 1994, 27 (22), 6532-6540.
70. Wang, H.-F.; Wang, H.-W.; Ho, R.-M., Helical phase from blending of chiral block copolymer and homopolymer. Chemical Communications 2012, 48 (30), 3665-3667.
71. Schenning, A. P. H. J.; Jonkheijm, P.; Peeters, E.; Meijer, E. W., Hierarchical Order in Supramolecular Assemblies of Hydrogen-Bonded Oligo(p-phenylene vinylene)s. Journal of the American Chemical Society 2001, 123 (3), 409-416.
72. Lee, C. C.; Grenier, C.; Meijer, E. W.; Schenning, A. P. H. J., Preparation and characterization of helical self-assembled nanofibers. Chemical Society Reviews 2009, 38 (3), 671-683.
73. Lewis, F. D.; Zhang, L.; Zuo, X., Orientation Control of Fluorescence Resonance Energy Transfer Using DNA as a Helical Scaffold. Journal of the American Chemical Society 2005, 127 (28), 10002-10003.
74. Ajayaghosh, A.; Praveen, V. K., π-Organogels of Self-Assembled p-Phenylenevinylenes: Soft Materials with Distinct Size, Shape, and Functions. Accounts of Chemical Research 2007, 40 (8), 644-656.
75. Figueira-Duarte, T. M.; Müllen, K., Pyrene-Based Materials for Organic Electronics. Chemical Reviews 2011, 111 (11), 7260-7314.
76. Niko, Y.; Kawauchi, S.; Otsu, S.; Tokumaru, K.; Konishi, G.-i., Fluorescence Enhancement of Pyrene Chromophores Induced by Alkyl Groups through σ–π Conjugation: Systematic Synthesis of Primary, Secondary, and Tertiary Alkylated Pyrenes at the 1, 3, 6, and 8 Positions and Their Photophysical Properties. The Journal of Organic Chemistry 2013, 78 (7), 3196-3207.
77. Lo, K.-H.; Li, M.-C.; Ho, R.-M.; Zhao, Y.-C.; Massuyeau, F.; Chuang, W.-T.; Duvail, J.-L.; Lefrant, S.; Hsu, C.-S., Luminescence Enhancement of Pyrene/Dispersant Nanoarrays Driven by the Nanoscale Spatial Effect on Mixing. Langmuir 2013, 29 (5), 1627-1633.
78. Homola, J.; Yee, S. S.; Gauglitz, G., Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical 1999, 54 (1), 3-15.
79. Mayer, K. M.; Hafner, J. H., Localized Surface Plasmon Resonance Sensors. Chemical Reviews 2011, 111 (6), 3828-3857.
80. Kuzyk, A.; Schreiber, R.; Fan, Z.; Pardatscher, G.; Roller, E.-M.; Högele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T., DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483 (7389), 311-314.
81. Schreiber, R.; Luong, N.; Fan, Z.; Kuzyk, A.; Nickels, P. C.; Zhang, T.; Smith, D. M.; Yurke, B.; Kuang, W.; Govorov, A. O.; Liedl, T., Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nature Communications 2013, 4 (1), 2948.
82. Song, C.; Blaber, M. G.; Zhao, G.; Zhang, P.; Fry, H. C.; Schatz, G. C.; Rosi, N. L., Tailorable Plasmonic Circular Dichroism Properties of Helical Nanoparticle Superstructures. Nano Letters 2013, 13 (7), 3256-3261.
83. Merg, A. D.; Boatz, J. C.; Mandal, A.; Zhao, G.; Mokashi-Punekar, S.; Liu, C.; Wang, X.; Zhang, P.; van der Wel, P. C. A.; Rosi, N. L., Peptide-Directed Assembly of Single-Helical Gold Nanoparticle Superstructures Exhibiting Intense Chiroptical Activity. Journal of the American Chemical Society 2016, 138 (41), 13655-13663.
84. Mokashi-Punekar, S.; Merg, A. D.; Rosi, N. L., Systematic Adjustment of Pitch and Particle Dimensions within a Family of Chiral Plasmonic Gold Nanoparticle Single Helices. Journal of the American Chemical Society 2017, 139 (42), 15043-15048.
85. Hentschel, M.; Schäferling, M.; Duan, X.; Giessen, H.; Liu, N., Chiral plasmonics. Science Advances 2017, 3 (5), e1602735.
86. Querejeta-Fernández, A.; Chauve, G.; Methot, M.; Bouchard, J.; Kumacheva, E., Chiral Plasmonic Films Formed by Gold Nanorods and Cellulose Nanocrystals. Journal of the American Chemical Society 2014, 136 (12), 4788-4793.
87. Gansel, J. K.; Thiel, M.; Rill, M. S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M., Gold Helix Photonic Metamaterial as Broadband Circular Polarizer. Science 2009, 325 (5947), 1513-1515.
88. Gibbs, J. G.; Mark, A. G.; Eslami, S.; Fischer, P., Plasmonic nanohelix metamaterials with tailorable giant circular dichroism. Applied Physics Letters 2013, 103 (21), 213101.
89. Mark, A. G.; Gibbs, J. G.; Lee, T.-C.; Fischer, P., Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nature Materials 2013, 12, 802.
90. Esposito, M.; Tasco, V.; Cuscunà, M.; Todisco, F.; Benedetti, A.; Tarantini, I.; Giorgi, M. D.; Sanvitto, D.; Passaseo, A., Nanoscale 3D Chiral Plasmonic Helices with Circular Dichroism at Visible Frequencies. ACS Photonics 2015, 2 (1), 105-114.
91. Barranco, A.; Borras, A.; Gonzalez-Elipe, A. R.; Palmero, A., Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Progress in Materials Science 2016, 76, 59-153.
92. Wang, Z.; Cheng, F.; Winsor, T.; Liu, Y., Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications. Nanotechnology 2016, 27, 412001.
93. Pendry, J. B., Negative Refraction Makes a Perfect Lens. Physical Review Letters 2000, 85 (18), 3966-3969.
94. Smith, D. R.; Kroll, N., Negative Refractive Index in Left-Handed Materials. Physical Review Letters 2000, 85 (14), 2933-2936.
95. Smith, D. R.; Pendry, J. B.; Wiltshire, M. C. K., Metamaterials and Negative Refractive Index. Science 2004, 305 (5685), 788-792.
96. Pendry, J. B., A Chiral Route to Negative Refraction. Science 2004, 306 (5700), 1353-1355.
97. Soukoulis, C. M.; Linden, S.; Wegener, M., Negative Refractive Index at Optical Wavelengths. Science 2007, 315 (5808), 47-49.
98. Zhang, S.; Park, Y.-S.; Li, J.; Lu, X.; Zhang, W.; Zhang, X., Negative Refractive Index in Chiral Metamaterials. Physical Review Letters 2009, 102 (2), 023901.
99. Plum, E.; Zhou, J.; Dong, J.; Fedotov, V. A.; Koschny, T.; Soukoulis, C. M.; Zheludev, N. I., Metamaterial with negative index due to chirality. Physical Review B 2009, 79 (3), 035407.
100. Zhou, J.; Dong, J.; Wang, B.; Koschny, T.; Kafesaki, M.; Soukoulis, C. M., Negative refractive index due to chirality. Physical Review B 2009, 79 (12), 121104.
101. Sharma, V.; Crne, M.; Park, J. O.; Srinivasarao, M., Structural Origin of Circularly Polarized Iridescence in Jeweled Beetles. Science 2009, 325 (5939), 449-451.
102. Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G., Solvophobically Driven Folding of Nonbiological Oligomers. Science 1997, 277 (5333), 1793-1796.
103. Li, M.-C.; Ousaka, N.; Wang, H.-F.; Yashima, E.; Ho, R.-M., Chirality Control and Its Memory at Microphase-Separated Interface of Self-Assembled Chiral Block Copolymers for Nanostructured Chiral Materials. ACS Macro Letters 2017, 6 (9), 980-986.
104. Matsen, M. W.; Bates, F. S., Block copolymer microstructures in the intermediate-segregation regime. The Journal of Chemical Physics 1997, 106 (6), 2436-2448.
105. Ho, R.-M.; Lin, F.-H.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Hsiao, B. S.; Sics, I., Crystallization-Induced Undulated Morphology in Polystyrene-b-Poly(l-lactide) Block Copolymer. Macromolecules 2004, 37 (16), 5985-5994.
106. Yashima, E.; Maeda, K.; Nishimura, T., Detection and Amplification of Chirality by Helical Polymers. Chemistry – A European Journal 2004, 10 (1), 42-51.
107. Wu, C. W.; Sanborn, T. J.; Huang, K.; Zuckermann, R. N.; Barron, A. E., Peptoid Oligomers with α-Chiral, Aromatic Side Chains: Sequence Requirements for the Formation of Stable Peptoid Helices. Journal of the American Chemical Society 2001, 123 (28), 6778-6784.
108. Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O. M.; Iatì, M. A., Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Matter 2017, 29 (20), 203002.
109. Hentschel, MSchäferling, M.; Duan, X.; Giessen, H.; Liu, N., Chiral plasmonics. Science Advances 2017, 3 (5), e1602735.
110. Kuzyk, A.; Schreiber, R.; Fan, Z.; Pardatscher, G.; Roller, E.-M.; Högele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T., DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483 (7389), 311-314.
111. Cheng, J.; Le Saux, G.; Gao, J.; Buffeteau, T.; Battie, Y.; Barois, P.; Ponsinet, V.; Delville, M.-H.; Ersen, O.; Pouget, E.; Oda, R., GoldHelix: Gold Nanoparticles Forming 3D Helical Superstructures with Controlled Morphology and Strong Chiroptical Property. ACS Nano 2017, 11 (4), 3806-3818.
112. Mokashi-Punekar, S.; Merg, A. D.; Rosi, N. L., Systematic Adjustment of Pitch and Particle Dimensions within a Family of Chiral Plasmonic Gold Nanoparticle Single Helices. Journal of the American Chemical Society 2017, 139 (42), 15043-15048.
113. Le Droumaguet, B.; Poupart, R.; Grande, D., “Clickable” thiol-functionalized nanoporous polymers: from their synthesis to further adsorption of gold nanoparticles and subsequent use as efficient catalytic supports. Polymer Chemistry 2015, 6 (47), 8105-8111.