簡易檢索 / 詳目顯示

研究生: 王申申
Shen-Shen, Wang
論文名稱: 以導電性原子力顯微鏡研究電致發光高分子之奈米級電荷傳導特性
Charge Transport with Nanoscale Confinement in an Electroluminescent Polymer Studied by Conducting Atomic Force Microscopy
指導教授: 林鶴南
Heh-Nan Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 52
中文關鍵詞: 導電性原子力顯微鏡電致發光高分子電荷傳導特性
外文關鍵詞: Conducting Atomic Force Microscopy, Electroluminescent Polymer, Charge Transport
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以導電性原子力顯微術(conducting atomic force microscopy, CAFM) 量測有機發光材料—導電高分子MEH-PPV [poly(2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-phenylene vinylene)]—之奈米尺度電流傳輸特性,此實驗架構之解析度在表面形貌(morphology)上可達nm等級、在電性上亦可量測nA之電流,可同時量得樣品表面形貌與區域電流大小。經過統計分析後可獲知電流分佈趨勢,得到試片內之微觀電流傳輸差異。此外,以定點量測電壓與電流特性,可以獲得區域電流對電壓的關係曲線,利用目前廣為接受的空間電荷限制傳導理論(space charge limited conduction, SCLC),以及與電場具有指數關係之遷移率(mobility)關係式,可計算出零電場之遷移率與傳輸的電場係數,本文中亦將所得數據與一般巨觀量測比較。本實驗方法為一高解析度的量測工具,可以此架構量測有機發光材料之區域及定點電流特性、幫助製程參數選擇,以及作為產品測試與檢驗之工具。


    目 錄 一、緒論……………………………………………………………1 1.1前言…………………………………………………………….1 1.2文獻回顧…………………...…………………………………2 二、有機發光二極體………………………………………………4 2.1發展起始………….……………………………………………4 2.2導電與發光原理………….……………………………………6 2.3單層元件設計…………….……………………………………9 三、電流特性………………………………………………………12 3.1界面注入……………………………………………………….13 3.1.1熱激發……………………………………………………...13 3.1.2穿隧效應………………………..………………………….14 3.1.3鏡面效應…………………..……………………………….15 3.2電流傳導……………………………………………………….15 3.2.1歐姆傳導………………………………………………….15 3.2.2空間電荷限制……………….……………………………16 (A) 沒有缺陷………………………………………………….18 (B) 缺陷在單一能階或多能階上…………………………….18 (C) 缺陷以指數分佈於能隙中………………….……………22 (D) 缺陷以高斯分佈於能隙中……………….………………23 (E) 缺陷不均勻分佈於能隙中……………………………….24 3.2.3 遷移率為電場之函數………….………………………….28 四、實驗簡介………………………………………………………30 4.1 AFM簡介……………………………………………………...30 4.2儀器與架設………….…………………………………………31 五、結果與討論…………………………………………………..34 5.1探針…………………………………………………………….34 5.2雜訊.……………………………………………………………35 5.3表面形貌與電流….……………………………………………37 5.4電流特性……………………………………………………….40 六、結論……………………………………………………………46 七、建議後續研究…………………………………………………47 八、參考文獻………………………………………………………48 圖 目 錄 圖一、電致發光材料之始………………………………………………5 圖二、高分子傳導機制…………………………………………………6 圖三、單重與三重激發態………………………………………………8 圖四、發光與能量散失…………………………………………………8 圖五、單層元件模型………………………………………………….10 圖六、單層元件設計……………………………………………………10 圖七、電流模型…………………………………………………………13 圖八、歐姆轉換電壓示意圖……………………………………………19 圖九、缺陷填滿電壓示意圖……………………………………………21 圖十、缺陷填滿電壓示意圖……………………………………………22 圖十一、實驗架設圖……………………………………………………33 圖十二、探針針尖SEM圖………………………………...……………34 圖十三、自製之同軸接線………………………………………………36 圖十四、摩擦力…………………………………………………………37 圖十五、掃描圖與截面圖………………………………………………39 圖十六、電流分佈圖……………………………………………………39 圖十七、正負電壓電流圖………………………………………………40 圖十八、實驗元件模型…………………………………………………41 圖十九、單點電壓電流圖………………………………………………44 圖二十、遷移率…………………………………………………………44 圖二十一、Ln μ對E1/2作圖 (P-F Plot)……………………………45 圖二十二、Log10 μ與一維傳導模型對E1/2作圖.…………………45 表 目 錄 表一、發光與能量散失機制……………………………………………9 表二、電流對電壓關係式………………………………………………25 表三、歐姆轉換電壓……………………………………………………26 表四、缺陷填滿電壓……………………………………………………27

    [1]S. F. Alvarado, W. Rieb, P. F. Seidler, and P. Strohriegl, Phys. Rev. B 56, 1269 (1997).
    [2]D. G. Lidzey, S. F. Alvarado, P. F. Seidler, A. Bleyer, and D. D. C. Bradley, Appl. Phys. Lett. 71, 2008 (1997).
    [3]S. F. Alvarado, P. F. Seidler, D. G. Lidzey, and D. D. C. Bradley, Phys. Rev. Lett. 81, 1082 (1998).
    [4]P. K. Wei, J. H. Hsu, W. S. Fann, and B. R. Hsieh, Synth. Met. 85, 1421 (1997).
    [5]R. Stevenson, M. Granström, and D. Richards, Appl. Phys. Lett. 75, 1574 (1999).
    [6]J. A. DeAro, D. Moses, and S. K. Buratto, Appl. Phys. Lett. 75, 3814 (1999).
    [7]J. A. DeAro, R. Gupta, A. J. Heeger, and S. K. Beratto, Synth. Met. 102, 865 (1999).
    [8]P. K. Wei, Y. F. Lin, W. Fann, Y. -Z. Lee, and S. -A. Chen, Phys. Rev. B 63, 045417 (2001).
    [9]H. Sakaguchi, F. Iwata, A. Hirai, A. Sasaki, and T. Nagamura, Jpn. J. Appl. Phys. 38, 3908 (1999).
    [10]T. M. Kelley and C. D. Frisbie, J. Vac. Sci. Technol. B 18, 632 (2000).
    [11]H. -N. Lin, S. -H. Chen, Y. -Z. Lee, and S. -A. Chen, J. Vac. Sci. Technol. B 19, 1 (2001).
    [12]K. Seshadri and C. D. Frisbie, Appl. Phys. Lett. 78, 993 (2001).
    [13]H. -N. Lin, S. -H. Chen, G. -Y. Perng, and S. -A. Chen, J. Appl. Phys. 89, 3976 (2001).
    [14]P. Pope, H. P. Kallmann, and P. Magnante, J. Chem. Phys. 38, 2042 (1963).
    [15]C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
    [16]J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. D. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature 347, 529 (1990).
    [17]R. H. Friend and N. C. Greenham, Handbook of Conducting Polymers (New York, M. Dekker, 1986) p. 823.
    [18]D. A. Skoog, D. M. West, and F. J. Holler, Fundamentals of Analytical Chemistry (New York, Saunders College Pub, 1988) 5th Ed.
    [19]K. C. Kao, W. Hwang, Electrical Transport in Solids (Pergamon, Oxford, 1981).
    [20]I. D. Park, J. Appl. Phys. 75, 1656 (1994).
    [21]A. J. Campbell, M. S. Weaver, D. G. Lidzey, and D. D. C. Bradley, J. Appl. Phys. 84, 6737 (1998).
    [22]S. B. Lee, K. Yoshino, J. Y. Park, and Y. W. Park, Phys. Rev. B 61, 2151 (2000).
    [23]T. Wakimoto, S. Kawami, K. Nagayama, Y. Yonemoto, R. Murayama, J. Funaki, H. Sato, H. Nakada, and K. Imai, International Symposium on Inorganic and Organic Electroluminescence (Hamamatsu), p. 77 (1994).
    [24]M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk, Thin Solid Film 326, 72 (1988).
    [25]R. C. Darran, P. W.Ⅱ Richard, K. S. Daniel, M. S. Suzanne, C. P. David, P. C. Gregory, and R. R. Newton, Appl. Phys. Lett. 76, 1425 (2000).
    [26]J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, and F. Cacialli, J. Appl. Phys. 84, 6859 (1998).
    [27]F. Cacialli, J. S. Kim, T. M. Brown, J. Morgado, M. Granström, R. H. Friend, G. Gigli, R. Cingolani, L. Favaretto, G. Barbraella, R. Daik, and W. J. Feast, Synth. Met. 109, 7(2000).
    [28]S. M. Tadayyon, K. Griffiths, P. R. Norton, C. Tripp, and Z. Popovic, J. Vac. Sci. A 17, 1773 (1999).
    [29]S. Shigeyuki, S. Toshiyuki, S. Tetsuya, N. Toshikazu, and S. Yutaka, Thermochimica Acta 352-353, 75 (2000).
    [30]J. He, M. Lu, X. Zhou, J. R. Cao, K. L. Wang, L. S. Liao, Z. B. Deng, X. M. Ding, X. Y. Hou, and S. T. Lee, Thin Solid Films 363, 240 (2000).
    [31]G. Gustafasson, G. M. Treacy, Y. Cao, F. Klavetter, N. Colanerin, A. J. Heeger, Synth. Met. 55-57, 4123 (1993).
    [32]G. Gu, P. Burrows, and S. R. Forrest, U.S. Patent No. 5844363 (1998).
    [33]王仁宏和李正中,光訓第八十期第五頁,民國八十八年。
    [34]B. K. Crone, I. H. Campbell, P. S. Davids, and D. L. Smith, Appl. Phys. Lett. 73, 3162 (1998).
    [35]D. A. Neamen, Semiconductor Physics & Devices, 2nd Ed., p. 319.
    [36]S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
    [37]E. H. Rhoderick and R. H. Williams, Metal-Semiconductor-Contacts (Clarendon, Oxford, 1988).
    [38]A. J. Champbell and D. D. C. Bradley, J. Appl. Phys. 86, 5004 (1999).
    [39]I. H. Campbell, P. S. Davids, D. L. Smith, N. N. Barashkov, and J. P. Ferraris, Appl. Phys. Lett. 72, 1863 (1998).
    [40]P. S. Davids, I. H. Campell, and D. L. Smith, J. Appl. Phys. 82, 6319 (1997).
    [41]R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A 119, 173 (1928).
    [42]Y. Yang and A. J. Heeger, Appl. Phys. Lett. 64, 1245 (1994).
    [43]Y. Yang, E. Westerweele, C. Zhang, P. Smith, and A. J. Heeger, J. Appl. Phys. 77, 694 (1995).
    [44]H. Vestweber, J. Pommerehne, R. Sander, R. F. Mahrt, A. Greiner, W. Heitz, and H. Bässler, Synth. Met. 68, 263 (1995).
    [45]P. S. Davids, S. M. Kogan, I. D. Parker, and D. L. Smith, Appl. Phys. Lett. 69, 2270 (1996).
    [46]D. V. Khramtchenkov, H. Bässler, and V. I. Arkhipov, J. Appl. Phys. 79, 9283 (1996).
    [47]P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, Appl. Phys. Lett. 68, 3308 (1996).
    [48]E. Tutis, M. -N. Bussac, and L. Zuppiroli, Appl. Phys. Lett. 75, 3880 (1999).
    [49]D. J. Pinner, R. H. Friend, and N. Tessler, J. Appl. Phys. 86, 5116 (1999).
    [50]I. Y. Goliney, Synth. Met. 111-112 (2000) 359.
    [51]P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, J. Appl. Phys. 79, 7991 (1996).
    [52]S. Karg, M. Meier, and W. Riess, J. Appl. Phys. 82, 1951 (1997).
    [53]A. J. Champbell, D. D. C. Bradley, and D. G. Lidzey, J. Appl. Phys. 82, 6326 (1997).
    [54]M. Dongge, I. A. Hümmelgen, B. Hu, and F. E. Karasz, J. Appl. Phys. 86, 3181 (1999).
    [55]Y. He and J. Kanicki, Appl. Phys. Lett. 76, 661 (2000).
    [56]D. Ma, I. A. Hümmelgen, X. Jing, Z. Hong, L. Wang, X. Zhao, F. Wang, and F. E. Karasz, J. Appl. Phys. 87, 312 (2000).
    [57]N. F. Mott and R. W. Gurney, Electronic Process in Ionic Crystals (Dover Publication, New York, 1940).
    [58]W. Helfrich, Physics and Chemistry of the Organic Solid State (Wiley, New York, 1967), Vol. 3, p. 1.
    [59]M. A. Lambert and P. Marks, Current Injection in Solids (Academic, New York, 1970).
    [60]H. C. F. Martens, J. N. Huiberts, and P.W. M. Blom, Appl. Phys. Lett. 77, 1852 (2000).
    [61]P. W. M. Blom and M. C. J. M. Vissenberg, Mat. Sci. & Eng. 27, 53 (2000).
    [62]P. W. M. Blom, H. C. F. Martens, and J. N. Huiberts, Synth. Met. 121, 1621 (2001).
    [63]I. H. Campbell, D. L. Smith, C. J. Neef, and J. P. Ferraris, Appl. Phys. Lett. 74, 2809 (1999).
    [64]J. C. Scott, P. J. Brock, J. R. Salem, S. Ramos, G. G. Mallianras, S. A. Carter, and L. Bozano, Synth. Met. 111-112, 289 (2000).
    [65]J. M. Thomas, J. O. Williams, and L. M. Turton, Trans. Faraday Soc. 64, 2496 (1968).
    [66]D. F. Williams and M. Schadt, J. Chem. Phys. 53, 3480 (1970).
    [67]P. J. Reucroft and F. D. Mullins, J. Phys. Chem. Solids, 35, 347 (1974).
    [68]W. Hwang and K. C. Kao, J. Chem. Phys. 60, 3845 (1974).
    [69]W. Hwang and K. C. Kao, Solid-State Electron, 19, 1045 (1976).
    [70]K. Unger, Phys. Stat, Sol. 2, 1279 (1962).
    [71]J. G. Simmons and M. C. Tam, Phys. Rev. B 7, 3706 (1973).
    [72]G. P. Owen, J. Sworakowski, J. M. Thomas, D. F. Williams, and J. O. Williams, J. Chem. Soc. Faraday II 70, 853 (1974).
    [73]M. Koehler, and I. A. Hümmelgen, J. Appl. Phys. 87, 3074 (2000).
    [74]C. C. Wu, J. K. M. Chun, P. E. Burrows, J. C. Sturm, M. E. Thompson, S. R. Forrest, and R. A. Register, Appl. Phys. Lett. 66, 653 (1995).
    [75]G. Y. Jung, C. Pearson, L. E. Horsburgh, I. D. Samuel, A. P. Monkman, and M. C. Petty, J. Phys. D: Appl. Phys. 33, 1029 (2000).
    [76]W. Hwang and K. C. Kao, Solid-State Electron. 15, 523 (1972).
    [77]A. Rose, Phys. Rev. 97, 322 (1955).
    [78]P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, Phys. Rev. B 55, 656 (1997).
    [79]J. M. Lupton and I. D. W. Samuel, Synth. Met. 111-112, 381 (2000).
    [80]S. V. Rakhmanova and E. M. Conwell, Appl. Phys. Lett. 76, 3822 (2000).
    [81]T. -Q. Nguyen, J. Wu, V. Doan, B. J. Schwartz, and S. H. Tolbert, Science 288, 652 (2000).
    [82]I. Bleyl, C. Erdelen, H. –W. Schmidt, and D. Haarer, Philos. Mag. B 79, 463 (1999).
    [83]H. C. F. Martens, P. W. M. Blom, and H. F. M. Schoo, Phys. Rev. B 61, 7489 (2000).
    [84]E. M. Conwell and M. W. Wu, Appl. Phys. Lett. 70, 1867 (1997).
    [85]B. K. Crone, I. H. Campbell, P. S. Davids, and D. L. Smith, Appl. Phys. Lett. 73, 3162 (1998).
    [86]I. H. Campbell, D. L. Smith, C. J. Neef, and J. P. Ferraris, Appl. Phys. Lett. 75, 841 (1999).
    [87]L. Bozano, S. A. Carter, J. C. Scott, G. G. Malliaras, and P. J. Brock, Appl. Phys. Lett. 74, 1132 (1999).
    [88]H. Bässler, Phys. Stat. Sol. B 175, 15 (1993).
    [89]L. B. Schein, Philos. Mag. B 65, 795 (1992).
    [90]Y. N. Gartstein and E. M. Conwell, Chem. Phys. Lett. 245, 351 (1995).
    [91]D. H. Dunlap, P. E. Parris, and V. M. Kenkre, Phys. Rev. Lett. 77, 542 (1996).
    [92]S. V. Novikov, D. H. Dunlap, V. M. Kenkre, P. E. Parris, and A. V. Aannikov, Phys. Rev. Lett. 81, 4472 (1998).
    [93]H. Cordes, S. D. Baranovskii, K. Kohary, P. Thomas, S. Yamasaki, F. Hensel, and J. -H. Wendorff, Phys. Rev. B 63, 097201 (2001).
    [94]T. Zyung and J. -J. Kim, Appl. Phys. Lett. 67, 3420 (1995).
    [95]N. Chawdhury, A. Köhler, M. G. Harrison, D. H. Hwang, A. B. Holmes, and R. H. Friend, Synth. Met. 102, 871 (1999).
    [96]J. Liu, T. -F. Guo, Y. Shi, and Y. Yang, J. Appl. Phys. 89, 3668 (2001).
    [97]R. J. O. M. Hoofman, M. P. de Haas, L. D. A. Siebbeles, and J. M. Warman, Nature 392, 54 (1998).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE