簡易檢索 / 詳目顯示

研究生: 林立祥
Lin, Li Hsiang
論文名稱: 使用局部多項式估計治癒模式
Cure Rate Models with Local Polynomial Estimation
指導教授: 黃禮珊
Huang, Li-Shan
口試委員: 江金倉
Chiang, Chin-Tsang
鄭又仁
Cheng, Yu-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 54
中文關鍵詞: 治療模型治癒率局部多項式回歸局部最大概似估計法
外文關鍵詞: Cure Model, Cure rate, Local polynomial regression, Local maximum likelihood estimation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 觀察患有某一疾病的個體,許多的醫學研究表明,接受適當的治療後,有一比例的個體會治癒、不再復發或者死於其他疾病,當個體不會發生所要探討的疾病事件,我們稱其為治癒個體。治愈模型可用來描述治癒個體並配合著適當的解釋變數來預測治癒率,有界失效治癒模式為傳統用來預測治癒率的兩類模型之一,我們將該模型在描述治癒率的部分從有母數建模拓展到無母數建模,而模型中的基準函數仍維持有母數分布的假設。我們透過局部多項式回歸的手法藉由最大局部概似函數來求得模型中治癒率部分的參數,並提出兩步驟演算法,迭代求得基準函數的參數與描述治癒率部分的參數。在理論部分,我們目前推導出讓最大概似函數滿足凹向性的條件,最後我們將所提的模型應用到兩份模擬資料與兩份實際資料。


    Many medical studies show that there are subjects who are cured, free of disease, or die of other causes after treatments. Those subjects come from the nonsusceptible population of the disease and cure models may be used to predict the cure rates with suitable covariates. In
    our thesis, we extend bounded cumulative hazards models, which is one of the two main types of cure models, to a nonparametric setting for estimating the cure rates and assume that the baseline function in the model follows a parametric distribution. We adopt the local polynomial
    approach and use the local likelihood criterion to derive estimators of cure rates. This way we adopt a flexible method to estimate the cure rate, the important part in cure models, and a convenient way to model the baseline function, which is less useful in practice. We also derive the convex conditions for the extended cure model. We simulate two examples to examine the performance of our proposed methods. Finally, we apply the extended model to two real datasets to predict cure rates with a continuous covariate.

    1 Introduction 2 Background 2.1 Cure rate model 2.1.1 Two-Component Mixture Model 2.1.2 Bounded Cumulative Hazard Model 2.2 Local Polynomial Modelling and Local Likelihood 2.2.1 Local Polynomial Modelling 2.2.2 Local Likelihood Estimation 3 Methodology 3.1 Data Structure 3.2 Semi-parametric Cure Rate Model – Local Polynomial Bounded Cumulative HazardModel 3.2.1 Estimatin Equation 3.2.2 Two-Step Estimation 3.3 Convex Property 4 Simulation Results 4.1 Example 1 4.2 Example 2 5 Real Data Analysis 5.1 Bone Marrow Transplantation for Leukemia 5.2 Death Time of Kidney Transplant Patients 6 Discussion and Future Work Appendix A Reference

    [1] Berkson, J., and Gage, R.P. (1952), “Survival Curve for Cancer Patients Following Treatment,” Journal of the American Statistical Association, 47, 501-515.
    [2] Chen, M., Ibrahim, J., and Sinha, D. (1999), “A New Bayesian Model for Survival Data with a Surviving Fraction,” Journal of the American Statistical Association, 94, 909-919.
    [3] Chen, S., and Zhou, L. (2007), “Local Partial Likelihood Estimation in Proportional Hazards
    Regression,” The Annals of Statistics, 35, 888–916.
    [4] Copelan, E.A., Biggs, J.C., Thompson, J.M., Crilley, P., Szer, J., Klein, J.P., Kapoor, N.,
    Avalos, B.R., Cunningham, I., Atkinson, K., Downs, K., Harmon, G.S., Daly, M.B., Brodsky,
    I., Bulova, S.I., and Tutschka, P. (1991), “Treatment for Acute Myelocytic Leukemia with Allogeneic Bone Marrow Transplantation Following Preparation with Bu/Cy”. Blood,
    78, 838-843.
    [5] Cox, D.R. (1972), “Regression models and life-tables (with discussion),” Journal of the Royal Statistical Society, Series B, 34, 187-220.
    [6] Fan, J. and Gijbels, I. (1996), Local Polynomial Modelling and Its Applications, London: Chapman and Hall.
    [7] Fan, J. ,Gijbels, I. and King, M. (1997), “Local Likelihood and Local Partial Likelihood in Hazard Regression,” The Annals of Statistics, 25, 1661-1690.
    [8] Fan, J., Farmen, M. and Gijbels, I. (1998), “Local Maximum Likelihood Estimation and Inference,” Journal of the Royal Statistical Society, Series B, 60, 591-608.
    [9] Fan, J. , Lin, H. and Zhou, Y. (2006) “Local Partial Likelihood Estimation For Lifetime
    Data,” The Annals of Statistics, 34, 290–325.
    [10] Farewell, V. (1982). “The Use of Mixture Models for the Analysis of Survival Data with
    Long-Term Survivors”. Biometrics, 38, 1041– 1046.
    [11] Feng, C., Wang, H., Chen, T., and Tu, X. (2014), “On Exact Forms of Taylor’s Theorem
    for Vector-Valued Functions”. Biometrika, 4, 1003.
    [12] Kuk, A.Y.C. and Chen, C.H. (1992), “A Mixture Model Combining Logistic Regression
    with Proportional Hazards Regression,” Biometrika 79, 531–541.
    [13] Devroye, L. (1986) Non-Uniform Random Variate Generation, New York:Springer.
    [14] Loader, C. (1999), Local Regression and likelihood, New York:Springer.
    [15] Lu, W. and Ying, Z. (2004), “On Semiparametric Transformation Cure Models,” Biometrika 91, 331–343.
    [16] Lu, W., Pang, D., and Hua, L. (2012), “Two-Component Mixture Cure Rate Model with Spline Estimated Nonparametric Components,” Biometrics 68, 726–735.
    [17] Fitzpatrick, P. (2006), Advanced Calculus, 2nd, California:Thomson Brooks / Cole.
    [18] Klein, J.P. and Moeschberger M.L. (1997), Survival Analysis Techniques for Censored and
    Truncated Data. New York:Springer.
    [19] Tsodikov, A. (1998a), “A Proportional Hazards Model Taking Account of Long-Term Survivors”.
    Biometrics, 54, 1508-1516.
    [20] Tsodikov, A. (1998b) “A Cure Model with Time-Changing Risk Factor: an Application To
    The Analysis of Secondary Laukaemia,” Statistics In Medicine, 17, 27-40.
    [21] Tibshirani, R. and Hastie, T. (1987), “Local Likelihood Estimation,” Journal of the American
    Statistical Association, 82, 559-567.
    [22] Tsodikov, A.D., Tsodikov, J.G., Ibrahim, J.,and Yakovlev A.Y. (2003), “Estimating Cure
    Rates from Survival Data: An Alternative to Two-Component Mixture Models,” Journal
    of the American Statistical Association, 98, 1063-1078.
    [23] Yakovlev, AY., Asselain, B., Bardou, VJ., Fourquet, A., Hoang, T., Rochefordiere, A., and Tsodikov, A.D. (1993), “A Simple Stochastic Model of Tumor Recurrence and Its Application to Data on Premenopausal Breast Cancer,” J.,editors. Biometrie et Analyse de Donnees Spatio-Temporelles, 12, 66-82.
    [24] Yakovlev, A.Y., and Tsodikov, A.D. (1996), “Stochastic Models of Tumor Latency and their Biostatistical Application,” Hackensack, NJ: World scientific.
    [25] Zeng, D., Yin, G. and Ibrahim, J.G. (2006), “Semiparametric Transformation Models for
    Survival Data with a Cure Fraction,” Journal of the American Statistical Association, 101, 670-684.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE