簡易檢索 / 詳目顯示

研究生: 楊上凱
Shang-Kai Yang
論文名稱: 強健性線型永磁馬達離散位置控制器
A Robust Discrete Position Controller for Linear Permanent Magnet Motor Drivers
指導教授: 潘晴財
Ching-Tsai Pan
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 123
中文關鍵詞: 線型永磁同步馬達滑模控制離散時間數位訊號處理器負載擾動估測器
外文關鍵詞: Linear permanent magnet synchronous motors, Sliding mode control, Discrete time, Digital signal processor, Load disturbance observer
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 線型馬達由於其本身架構上的簡單且具有直接驅動、安靜性、高可靠性、低磨損以及高加減速能力,近年來已逐漸地應用於各種工業控制上,如精密之半導體製程設備與裝置、高速之運輸工具、自動化控制以及醫療設備等。然而,由於線型馬達移動過程易受漣波力、參數變化、外來負載干擾和摩擦力等環境干擾而影響其操作性能。是故不少文獻提出各種強健性控制以克服此困境。此外,由於近幾年來數位電子元件的快速發展與微處理器的廣泛應用,各種離散控制器之應用研究也愈來愈熱門。因此本論文主要研究目標即在於應用實驗室先進們所發展之離散型定結構滑模控制以設計與製作一全數位化之強健性線型永磁同步馬達位置驅動器。

    基本上,本論文之主要貢獻可分為三點:第一點,針對線型永磁同步馬達之電流控制迴路及位置控制迴路分別設計其所屬之離散型定結構滑模控制器,以此消除傳統滑模控制的切跳現象,同時達到雙重之強健控制效果,而且有利於數位化之製作與應用。第二點,利用線型永磁同步馬達的數學模型,由動量不滅定律觀念設計一適應性負載估測器,使系統能在不連續擾動影響下有較佳的軌跡追蹤及暫態特性。第三點,本論文最後並實際製作一雛型驅動系統以驗證所提控制策略之可行性。其中控制器並以TI公司新近推出之DSP TMS320F2812加以實現所提控制理論,不但可以減少硬體電路之體積而且方便維護及修改控制法則。


    Linear permanent magnet synchronous motors (LPMSM), due to their merits of simple structure, direct drive capability, less noisy, high reliability, low frictional loss, high acceleration and deceleration capability, have now been gradually applied to various industrial control areas, such as high precision semiconductor manufacturing process equipment, and high speed transportation, automation control and medical device,…, etc. However, the dynamic performance of a LPMSM is still affected by the parameter variations, load disturbances as well as the friction force. Hence, various robust control strategies were proposed in literature to overcome this dilemma. In addition, in recent years digital electronic components are developed fastly and the microprocessors are widely applied. Therefore, various discrete-time control methods have gradually been developed for different applications. In this thesis, a fully digital robust control is proposed for LPMSM drives.

    Basically, the major contributions of this thesis may be summarized as follows. First, a double discrete-time fixed structure sliding mode controller is proposed for the robust control of both electrical and mechanical subsystems of LPMSM drives and the chattering effect are eliminated simultaneously. Second, by using the derived mathematical model of the LPMSM, the author proposes an adaptive load disturbance observer (ALDO) by using the concept of the law of momentum conservation to achieve a better tracking response. Finally, a prototype is also constructed to verify the validity of the proposed control. The proposed controller is implemented fully digitally using (DSP) TMS320F2812 to reduce hardware complexity, volume and to simplify the maintenance problems.

    中文摘要 ----------------------------------------------- Ⅰ 英文摘要 ----------------------------------------------- Ⅱ 誌 謝--------------------------------------------------- Ⅲ 目 錄 ------------------------------------------------- IV 圖目錄 ------------------------------------------------- VI 表目錄 ------------------------------------------------- XI 第一章 緒論 ---------------------------------------------- 1 1.1 研究動機 ------------------------------------- 1 1.2 相關文獻回顧 --------------------------------- 2 1.3 本論文之貢獻 --------------------------------- 3 1.4 本論文之內容概述 ----------------------------- 4 第二章 線型永磁馬達數學模型 ------------------------------ 6 2.1 前言 ----------------------------------------- 6 2.2 線型馬達簡介 --------------------------------- 6 2.3 線型馬達操作原理 ---------------------------- 10 2.4 線型永磁馬達數學模型 ------------------------ 14 第三章 強健性線型永磁馬達離散位置控制器 -------------- 33 3.1 前言 ---------------------------------------- 33 3.2 離散式定結構滑模控制理論簡介 ---------------- 33 3.3 強健性線型永磁馬達離散位置控制器 ------------ 43 3.4 模擬結果 ------------------------------------ 62 第四章 實體電路製作與實測結果 --------------------------- 88 4.1 前言 ----------------------------------------- 88 4.2 硬體系統之實體製作 --------------------------- 88 4.3 數位控制器設計 ------------------------------- 93 4.4 實测結果 ------------------------------------- 96 第五章 結論 -------------------------------------------- 109 參考文獻 ----------------------------------------------- 112 附錄一 控制程式----------------------------------------- 117

    [1] I. Boldea and, S. A. Nasar, “Linear electric motors:theory, design and practical applications,” Prentice-Hall, 1987.
    [2] J. F. Gieras, and Z. J. Piech, “Linear synchronous motors:transportation and automation systems,” CRC Press, 2000.
    [3] G. W. McLean, “Review of recent progress in linear motors,” IEE Proceedings Electric Power Applications, vol. 135, 1988, pp. 380-416.
    [4] I. Boldea, and S. A. Nasar, “Linear electric actuators and generators,” IEEE Transactions on Energy Conversion, vol. 14, 1999, pp. 712-717.
    [5] F. J. Lin, P. H. Shen, and Y. S. Kung, “Adaptive wavelet neural network control for linear synchronous motor servo drive,” IEEE Transactions on Magnetic, vol. 41, 2005, pp. 4401-4412.
    [6] D. Y. Lee, C. G. Jung, K. J. Yoon, and G. T. Kim, “A study on the efficiency optimum design of a permanent magnet type linear synchronous motor,” IEEE Transactions on Magnetic, vol. 41, 2005, pp. 1860-1863.
    [7] Q. Guo, L. Wang, and R. Luo, “Robust fuzzy variable structure control of PMLSM servo system,” IEEE Conference of the Intelligent Processing Systems, vol. 1, 1997, pp. 675-679.
    [8] S. C. Hsu, C. H. Liu, C. H. Liu, and N. J. Wang, “Fuzzy PI controller tuning for a linear permanent magnet synchronous motor drive,” IEEE Conference on Industrial Electronics Society, vol. 3, no. 2, 2001, pp. 1661-1666.
    [9] M. J. Kharaajoo, and R. Fazaie, “Discrete-time sliding mode control of permanent magnet linear synchronous motor in high-performance motion with large parameter uncertainty,” SICE 2003 Annual Conference, vol.3, 2003, pp. 3127-3130.
    [10] F. J. Lin, C. H. Lin, and P. K. Huang, “Recurrent fuzzy neural network controller design using sliding-mode control for linear synchronous motor drive,” IEEE Proceedings on Control Theory and Applications, vol. 151, 2004, pp. 407-416.
    [11] Y. Junyou, H. Guofeng, and C. Jiefan, “Sliding mode variable-structure direct thrust control of PMLSM using SVM,” IEEE Conference on Electrical Machines and Systems, vol. 2, 2005, pp. 1655-1658.
    [12] F. J. Lin, K. K. Shyu, and C. H. Lin, “Incremental motion control of linear synchronous motor,” IEEE Transactions on Aerospace and Electronic Systems, vol. 38, 2002, pp. 1011-1022.
    [13] T. Yanfeng, and G. Qingding, “Study on robustness-tracking control for linear servo system,” IEEE Conference on Power Electronics and Motion Control, vol. 2, 2004, pp. 1060-1064.
    [14] G. Bartolini, A. Ferrara, and V. I. Utkin, “Adaptive sliding mode control in discrete-time system,” Automatic, vol. 31, no. 5, 1995, pp. 769-773.
    [15] C. Y. Chan, “Discrete Adaptive sliding-mode tracking controller,” Automatic, vol. 33, no. 5, 1997, pp. 999-1002.
    [16] X. Chen, and T. Fukuda, “Robust adaptive quasi-sliding mode controller for discrete-time systems,” System & Control Letters, vol. 35, 1998, pp.165-173.
    [17] S. Spurgeon, “On the development of discrete time sliding mode control systems,” IEE conference on control, 1991, pp. 505-510.
    [18] F. Zhao, and V. Utkin, “Adaptive simulation and control of variable-structure control systems in sliding regimes,” Automatic, vol. 32, no. 7, 1996, pp. 1037-1042.
    [19] C. T. Pan, T. Y. Chang, and C. M. Hong, “A fixed structure discrete-time sliding mode controller for induction motor drives,” IEEE Transactions on Energy Conversion, vol. 9, no. 1, 1994.
    [20] C. T. Pan, and T. Y. Chang, “A fixed structure sliding mode controlled induction motor drive”, IEEE conference on Power Electronics Specialists, vo1.1, pp. 243-249.
    [21] Y. K. Tzeng, C. T. Pan, and T. C. Wand, “A fixed structure sliding mode control of the low-power consumption Maglev system for high speed transportation,” IEEE International Symposium on Industrial Electronics, vol. 2, 1995, pp. 695-699.
    [22] W. T. Su, and C. M. Liaw, “Adaptive positioning control for a LPMSM drive based on adapted inverse model and robust disturbance observer,” IEEE Transactions on Power Electronics, vol. 21, 2006, pp. 505-517.
    [23] S. Komada, M. Ishida, K. Ohnishi, and T. Hori, “Disturbance observer-based motion control of direct drive motors,” IEEE Transactions on Energy Conversion, vol. 6, 1991, pp. 553-559.
    [24] W. Limei, and G. Qingding, “Robust permanent magnet linear synchronous motor servo system based on disturbance observer,” IEEE Conference on Electrical Machines and Systems, vol. 2, 2001, pp. 718-721.
    [25] S. Komada, M. Ishida, K. Ohnishi, and T. Hori, “Motion control of linear synchronous motors based on disturbance observer,” IEEE Conference on Industrial Electronics Society, vol. 1, 1990, pp. 154-159.
    [26] G. Qingding, L. Ruifu, and W. Limei, “Robust PMLSM servo system using disturbance observer based on acceleration control loop,” IEEE Conference on Power Electronics and Variable Speed Drives, 1996, pp. 288-293.
    [27] V. V. Chalam, “Adaptive control systems : techniques and applications,” Marcel Dekker, 1987.
    [28] P. A. Ioannou, and J. Sun, “Robust adaptive control,” Prentice Hall, 1996.
    [29] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Transactions on Automatic Control, vol. 22, 1977, pp. 212-222.
    [30] L. Yi, and M. Tomizuka, “Two degree-of-freedom control with adaptive robust control for hard disk servo systems,” IEEE International Workshop on Advanced Motion Control, 1998. pp. 604-610.
    [31] “TMS320x281x DSP analog-to-digital converter reference guide,” Texas Instruments, 2004.
    [32] N. Mohan, T. M. Undeland, and W. P. Robins, “Power electronics : converters, applications and design,” John Wiley & Sons, New York, 1995.
    [33] T. H. Liu, Y. C. Lee, and Y. H. Chang, “Adaptive controller design for a linear motor control system,” IEEE Transactions on Aerospace And Electronic Systems, vol. 40, no. 2, 2004, pp. 601-616.
    [34] W. Limei, and G. Qingding, “Sensorless control of permanent magnet linear synchronous motor based on nonlinear observer,” IEEE International Workshop on Advanced Motion Control, 2004, pp. 619-622.
    [35] B. Yao, “High-performance robust motion control of machine tools: An adaptive robust control approach and comparative Experiments,” IEEE Transactions on Macaronis, vol. 2, 1997, pp. 63-76.
    [36] P. Vas, “Vector control of a AC machines,” New York, 1990
    [37] V. I. Utkin, “Sliding modes and their application in variable structure system,” MIR Publisher, 1978
    [38] 許文俊,『三相昇壓型主動式整流器之適應性定結構滑模控制』,清華大學碩士論文,2002。
    [39] 林世彬,『應用於感應馬達驅動器之雙定結構滑模控制器』,清華大學碩士論文,2003。
    [40] 湯泰郎,『應用於線型永磁馬達驅動器之定結構滑模定位控制 器』,清華大學碩士論文,2005。
    [41] 張錠玉,『基於空間向量之高性能感應伺服驅動器之設計與實作』,清華大學碩士論文,1994。
    [42] 許益适 編著,『電動機控制』,全華,1994。
    [43] H. Polinder, B. C. Mecrow, A. G. Jack, Phillip B. Dickinson, and Ma. A. Mueller, “Convetional and TFPM linear generators for direct-drive wave energy conversion,” IEEE Transactions on Energy Conversion, vol. 20, no.2 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE