研究生: |
林執中 Lin, Tze-Chung |
---|---|
論文名稱: |
利用含矽之嵌段共聚物模板化聚合製備超穎機械材料與光子晶體 Mechanical Metamaterials and Photonic Crystals from Templated Polymerization using Silicon-Containing Block Copolymers |
指導教授: |
何榮銘
Ho, Rong-Ming |
口試委員: |
鄭友仁
Jeng, Yeau-Ren 洪毓玨 Hung, Yu-Chueh 蔣酉旺 Chiang, Yeo-Wan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 102 |
中文關鍵詞: | 模板化 、超穎材料 、光子晶體 、甲殼素 、雙螺旋二十四面體 、雙嵌段共聚物 |
外文關鍵詞: | Templated, Metamaterial, PhotonicCrystal, Chitosan, Gyroid, Blockcopolymer |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的為利用高有序奈米多孔之聚苯乙烯為模版進行模板化聚合,製備具有高機械性質展現與光子晶體光學特性之奈米材料。首先利用聚苯乙烯共聚二甲基矽氧烷雙嵌段共聚物進行自組裝,製備具有高有序雙螺旋二十四面體之奈米微結構,接著以氫氟酸蝕刻含矽之二甲基矽氧烷鏈段,獲得具有高有序雙螺旋二十四面體奈米孔道結構之奈米模板,利用此模版進行模板化聚合高有序工業用樹酯(酚甲醛樹酯)以及生物高分子(甲殼素)奈米高分子材料之製備。由於雙螺旋二十四面體之結構特異性,以此技術製備之高有序酚甲醛樹酯可具有高能量吸收、快速應力分散等高機械性質展現,因此我們期望以此高有序酚甲醛樹酯應用於抗衝擊之材料。同時,藉由仿生的概念與雙網狀結構錯位原理,我們以此奈米模版製備近似於蝴蝶翅膀結構之奈米高有序甲殼素材料,並期望獲得如蝴蝶翅膀結構性發光之高反射光子晶體特性。希冀利用甲殼素不吸收紫外光波段之光學特性,將此特殊結構之高反射高有序奈米甲殼素材料應用於相關紫外光光學儀器上。因此,在此實驗中我們成功結合了可分解之雙嵌段共聚物之自組裝行為與模板化聚合之技術,提出了一個嶄新的方法以製備具雙螺旋二十四面體結構之高有序奈米混成與多孔高分子材料,並可藉由此特異結構達到高機械性質展現與光子晶體光學特性。
Herein we aim to fabricate well-ordered nanoporous polymers by using nanoporous polystyrene through templated polymerization. The nanoporous PS template is obtained from the self-assembly of polystyrene-b-poly(dimethylsiloxane) (PS-PDMS) followed by the acid etching of PDMS blocks, giving nanoporous PS with well-defined nanochannels with gyroid network texture. In this study, we demonstrate the feasibility of using the nanoporous PS fabricated for templated polymerization of resins (phenol-formaldehyde resins) and bio-polymer (chitosan). Owing to the unique networks of gyroid, the fabricated phenolic resin will be expected to exhibit mechanical metamaterial properties such as high specific energy absorption and efficient stress distribution. As a result, it is highly appealing to apply this intriguing texture to various anti-impact applications. Bio-mimicking from the structural coloration of butterfly wing structure, the fabricated nanoporous chitosan with shifting gyroid-structured nanonetworks is expected to give unique optical behaviors such as high reflectance. Note that the adsorption of chitosan in the ultra-violet region is low; as a result, it is highly appealing to exploit the well-ordered chitosan nanonetworks as high reflective materials for UV optical devices. As a result, by combining the self-assembly of degradable block copolymer with templated polymerization, we suggest a novel method for preparing well-defined nanoporous polymers with gyroid network texture for achieving high mechanical properties and photonic crystal behaviors.
1. http://www.liuli.com/en-us/index.aspx.
2. Cao, G., Synthesis, properties and applications. World Scientific: 2004.
3. Das, B.; Subramaniam, S.; Melloch, M. R., Effects of electron-beam-induced damage on leakage currents in back-gated GaAs/AlGaAs devices. Semiconductor Science and Technology 1993, 8 (7), 1347.
4. Whitesides, G. M.; Grzybowski, B., Self-Assembly at All Scales. Science 2002, 295 (5564), 2418-2421.
5. Prockop, D. J.; Fertala, A., The Collagen Fibril: The Almost Crystalline Structure. Journal of Structural Biology 1998, 122 (1), 111-118.
6. Bates, F. S.; Fredrickson, G. H., Block copolymer thermodynamics: theory and experiment. Annual Review of Physical Chemistry 1990, 41 (1), 525-557.
7. Bates, F. S.; Fredrickson, G., Block copolymers-designer soft materials. Physics today 2000.
8. Matsen, M. W.; Schick, M., Stable and unstable phases of a diblock copolymer melt. Physical Review Letters 1994, 72 (16), 2660-2663.
9. Martín-Moreno, L.; García-Vidal, F. J.; Somoza, A. M., Self-Assembled Triply Periodic Minimal Surfaces as Molds for Photonic Band Gap Materials. Physical Review Letters 1999, 83 (1), 73-75.
10. Milhaupt, J. M.; Lodge, T. P., Homopolymer and small-molecule tracer diffusion in a gyroid matrix. Journal of Polymer Science Part B: Polymer Physics 2001, 39 (8), 843-859.
11. Adachi, M.; Okumura, A.; Sivaniah, E.; Hashimoto, T., Incorporation of Metal Nanoparticles into a Double Gyroid Network Texture. Macromolecules 2006, 39 (21), 7352-7357.
12. Luzzati, V.; Spegt, P., Polymorphism of lipids. Nature 1967, 215, 701-704.
13. Schoen, A., Technical Note NASA-TN-D-5541. NASA, Washington, DC 1970.
14. Alward, D. B.; Kinning, D. J.; Thomas, E. L.; Fetters, L. J., Effect of arm number and arm molecular weight on the solid-state morphology of poly(styrene-isoprene) star block copolymers. Macromolecules 1986, 19 (1), 215-224.
15. Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J., The Gyroid: A New Equilibrium Morphology in Weakly Segregated Diblock Copolymers. Macromolecules 1994, 27 (15), 4063-4075.
16. Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K., Epitaxial Relationship for Hexagonal-to-Cubic Phase Transition in a Book Copolymer Mixture. Physical Review Letters 1994, 73 (1), 86-89.
17. Spatz, J. P.; Sheiko, S.; Möller, M., Ion-Stabilized Block Copolymer Micelles: Film Formation and Intermicellar Interaction. Macromolecules 1996, 29 (9), 3220-3226.
18. Nose, T., Coexistence curves of polystyrene/ poly(dimethylsiloxane) blends. Polymer 1995, 36 (11), 2243-2248.
19. Jung, Y. S.; Chang, J. B.; Verploegen, E.; Berggren, K. K.; Ross, C. A., A Path to Ultranarrow Patterns Using Self-Assembled Lithography. Nano Letters 2010, 10 (3), 1000-1005.
20. Lo, T.-Y.; Chao, C.-C.; Ho, R.-M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L., Phase Transitions of Polystyrene-b-poly(dimethylsiloxane) in Solvents of Varying Selectivity. Macromolecules 2013, 46 (18), 7513-7524.
21. Wang, Y.; He, C.; Xing, W.; Li, F.; Tong, L.; Chen, Z.; Liao, X.; Steinhart, M., Nanoporous Metal Membranes with Bicontinuous Morphology from Recyclable Block-Copolymer Templates. Advanced Materials 2010, 22 (18), 2068-2072.
22. Mansky, P.; Harrison, C. K.; Chaikin, P. M.; Register, R. A.; Yao, N., Nanolithographic templates from diblock copolymer thin films. Applied Physics Letters 1996, 68 (18), 2586-2588.
23. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H., Block Copolymer Lithography: Periodic Arrays of ~1011 Holes in 1 Square Centimeter. Science 1997, 276 (5317), 1401-1404.
24. Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P., Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates. Science 2000, 290 (5499), 2126-2129.
25. Du, P.; Li, M.; Douki, K.; Li, X.; Garcia, C. B. W.; Jain, A.; Smilgies, D. M.; Fetters, L. J.; Gruner, S. M.; Wiesner, U.; Ober, C. K., Additive-Driven Phase-Selective Chemistry in Block Copolymer Thin Films: The Convergence of Top–Down and Bottom–Up Approaches. Advanced Materials 2004, 16 (12), 953-957.
26. Guo, F.; Andreasen, J. W.; Vigild, M. E.; Ndoni, S., Influence of 1,2-PB Matrix Cross-Linking on Structure and Properties of Selectively Etched 1,2-PB-b-PDMS Block Copolymers. Macromolecules 2007, 40 (10), 3669-3675.
27. Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A., Mesoporous Polystyrene Monoliths. Journal of the American Chemical Society 2001, 123 (7), 1519-1520.
28. Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A., Ordered Nanoporous Polymers from Polystyrene−Polylactide Block Copolymers. Journal of the American Chemical Society 2002, 124 (43), 12761-12773.
29. Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H., Three-Dimensionally Packed Nanohelical Phase in Chiral Block Copolymers. Journal of the American Chemical Society 2004, 126 (9), 2704-2705.
30. Ho, R.-M.; Tseng, W.-H.; Fan, H.-W.; Chiang, Y.-W.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H., Solvent-induced microdomain orientation in polystyrene-b-poly(l-lactide) diblock copolymer thin films for nanopatterning. Polymer 2005, 46 (22), 9362-9377.
31. Tseng, W.-H.; Chen, C.-K.; Chiang, Y.-W.; Ho, R.-M.; Akasaka, S.; Hasegawa, H., Helical nanocomposites from chiral block copolymer templates. Journal of the American Chemical Society 2009, 131 (4), 1356-1357.
32. Hsueh, H.-Y.; Chen, H.-Y.; She, M.-S.; Chen, C.-K.; Ho, R.-M.; Gwo, S.; Hasegawa, H.; Thomas, E. L., Inorganic gyroid with exceptionally low refractive index from block copolymer templating. Nano letters 2010, 10 (12), 4994-5000.
33. Kim, E.; Vaynzof, Y.; Sepe, A.; Guldin, S.; Scherer, M.; Cunha, P.; Roth, S. V.; Steiner, U., Gyroid‐Structured 3D ZnO Networks Made by Atomic Layer Deposition. Advanced functional materials 2014, 24 (6), 863-872.
34. Wang, X.; Liu, W.; Liu, J.; Wang, F.; Kong, J.; Qiu, S.; He, C.; Luan, L., Synthesis of nestlike ZnO hierarchically porous structures and analysis of their gas sensing properties. ACS applied materials & interfaces 2012, 4 (2), 817-825.
35. Ma, W.-C.; Huang, W.-S.; Ku, C.-S.; Ho, R.-M., Nanoporous gyroid metal oxides with controlled thickness and composition by atomic layer deposition from block copolymer templates. Journal of Materials Chemistry C 2016, 4 (4), 840-849.
36. Wang, X. B.; Lin, T. C.; Hsueh, H. Y.; Lin, S. C.; He, X. D.; Ho, R. M., Nanoporous Gyroid-Structured Epoxy from Block Copolymer Templates for High Protein Adsorbability. Langmuir : the ACS journal of surfaces and colloids 2016, 32 (25), 6419-28.
37. Veselago, V. G., The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi 1968, 10, 509–514.
38. Smith, D. R.; Pendry, J. B.; Wiltshire, M. C. K., Metamaterials and Negative Refractive Index. Science 2004, 305 (5685), 788-792.
39. Pendry, J. B., Negative Refraction Makes a Perfect Lens. Physical Review Letters 2000, 85 (18), 3966-3969.
40. Tsakmakidis, K. L.; Boardman, A. D.; Hess, O., /`Trapped rainbow/' storage of light in metamaterials. Nature 2007, 450 (7168), 397-401.
41. Lee, J.-H.; Singer, J. P.; Thomas, E. L., Micro-/Nanostructured Mechanical Metamaterials. Advanced Materials 2012, 24 (36), 4782-4810.
42. Pendry, J. B.; Holden, A. J.; Stewart, W. J.; Youngs, I., Extremely Low Frequency Plasmons in Metallic Mesostructures. Physical Review Letters 1996, 76 (25), 4773-4776.
43. Stewart, J. B. P. A. J. H. D. J. R. W. J., Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques 1999, 47 (11), 2075 - 2084.
44. Smith, D. R.; Padilla, W. J.; Vier, D. C.; Nemat-Nasser, S. C.; Schultz, S., Composite Medium with Simultaneously Negative Permeability and Permittivity. Physical Review Letters 2000, 84 (18), 4184-4187.
45. Vukusic, P.; Sambles, J. R.; Lawrence, C. R.; Wootton, R. J., Quantified interference and diffraction in single Morpho butterfly scales. Proceedings of the Royal Society of London. Series B: Biological Sciences 1999, 266 (1427), 1403.
46. Prum, R. O.; Quinn, T.; Torres, R. H., Anatomically diverse butterfly scales all produce structural colours by coherent scattering. Journal of Experimental Biology 2006, 209 (4), 748.
47. Vukusic, P.; Sambles, J.; Ghiradella, H., Optical classification of microstructure in butterfly wing-scales. Photonics Sci. News 2000, 6 (1), 61-66.
48. Saranathan, V.; Osuji, C. O.; Mochrie, S. G.; Noh, H.; Narayanan, S.; Sandy, A.; Dufresne, E. R.; Prum, R. O., Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. Proceedings of the National Academy of Sciences 2010, 107 (26), 11676-11681.
49. Epps, T. H.; Cochran, E. W.; Bailey, T. S.; Waletzko, R. S.; Hardy, C. M.; Bates, F. S., Ordered network phases in linear poly (isoprene-b-styrene-b-ethylene oxide) triblock copolymers. Macromolecules 2004, 37 (22), 8325-8341.
50. Vignolini, S.; Yufa, N. A.; Cunha, P. S.; Guldin, S.; Rushkin, I.; Stefik, M.; Hur, K.; Wiesner, U.; Baumberg, J. J.; Steiner, U., A 3D Optical Metamaterial Made by Self-Assembly. Advanced Materials 2012, 24 (10), OP23-OP27.
51. Maldovan, M.; Urbas, A. M.; Yufa, N.; Carter, W. C.; Thomas, E. L., Photonic properties of bicontinuous cubic microphases. Physical Review B 2002, 65 (16), 165123.
52. Hsueh, H.-Y.; Ling, Y.-C.; Wang, H.-F.; Chien, L.-Y. C.; Hung, Y.-C.; Thomas, E. L.; Ho, R.-M., Shifting Networks to Achieve Subgroup Symmetry Properties. Advanced Materials 2014, 26 (20), 3225-3229.
53. Georgopanos, P.; Lo, T.-Y.; Ho, R.-M.; Avgeropoulos, A., Synthesis, molecular characterization and self-assembly of (PS-b-PDMS)n type linear (n = 1, 2) and star (n = 3, 4) block copolymers. Polymer Chemistry 2017, 8 (5), 843-850.
54. Tsai, P.-C.; Jeng, Y.-R., Enhanced mechanical properties and viscoelastic characterizations of nanonecklace-reinforced carbon nanotube/copper composite films. Applied Surface Science 2015, 326, 131-138.
55. Ndoni, S.; Vigild, M. E.; Berg, R. H., Nanoporous materials with spherical and gyroid cavities created by quantitative etching of polydimethylsiloxane in polystyrene-polydimethylsiloxane block copolymers. Journal of the American Chemical Society 2003, 125 (44), 13366-13367.
56. Trucks, G.; Raghavachari, K.; Higashi, G.; Chabal, Y., Mechanism of HF etching of silicon surfaces: A theoretical understanding of hydrogen passivation. Physical Review Letters 1990, 65 (4), 504.
57. Verhaverbeke, S.; Teerlinck, I.; Vinckier, C.; Stevens, G.; Cartuyvels, R.; Heyns, M., The etching mechanisms of SiO2 in hydrofluoric acid. Journal of The Electrochemical Society 1994, 141 (10), 2852-2857.
58. Gräf, D.; Grundner, M.; Schulz, R.; Mühlhoff, L., Oxidation of HF‐treated Si wafer surfaces in air. Journal of Applied Physics 1990, 68 (10), 5155-5161.
59. Gräf, D.; Grundner, M.; Schulz, R., Reaction of water with hydrofluoric acid treated silicon (111) and (100) surfaces. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1989, 7 (3), 808-813.
60. Hsueh, H.-Y.; Yao, C.-T.; Ho, R.-M., Well-ordered nanohybrids and nanoporous materials from gyroid block copolymer templates. Chemical Society Reviews 2015, 44 (7), 1974-2018.
61. Hsueh, H. Y.; Ling, Y. C.; Wang, H. F.; Chien, L. Y. C.; Hung, Y. C.; Thomas, E. L.; Ho, R. M., Shifting Networks to Achieve Subgroup Symmetry Properties. Advanced Materials 2014, 26 (20), 3225-3229.
62. Jiang, P.; Cizeron, J.; Bertone, J. F.; Colvin, V. L., Preparation of macroporous metal films from colloidal crystals. Journal of the American Chemical Society 1999, 121 (34), 7957-7958.
63. Monnier, A.; Schüth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F., Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures. Science 1993, 261 (5126), 1299-1303.
64. Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C.; Khayrullin, I.; Dantas, S. O.; Marti, J.; Ralchenko, V. G., Carbon structures with three-dimensional periodicity at optical wavelengths. Science 1998, 282 (5390), 897-901.
65. Mallory, G. O.; Hajdu, J. B., Electroless plating: fundamentals and applications. William Andrew: 1990.
66. Hsueh, H. Y.; Huang, Y. C.; Ho, R. M.; Lai, C. H.; Makida, T.; Hasegawa, H., Nanoporous gyroid nickel from block copolymer templates via electroless plating. Advanced Materials 2011, 23 (27), 3041-3046.
67. Hsueh, H.-Y.; Chen, H.-Y.; Hung, Y.-C.; Ling, Y.-C.; Gwo, S.; Ho, R.-M., Well-Defined Multibranched Gold with Surface Plasmon Resonance in Near-Infrared Region from Seeding Growth Approach Using Gyroid Block Copolymer Template. Advanced Materials 2013, 25 (12), 1780-1786.