研究生: |
陳怡文 Yi-Wen Chen |
---|---|
論文名稱: |
多種保養動作下動態預防保養策略之研究 Study of Multiactions Dynamic Preventive Maintenance Policy |
指導教授: |
阮約翰
John Yuan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 46 |
中文關鍵詞: | 健康指標 、多種保養動作 、動態保養策略 |
外文關鍵詞: | health index, Multiaction, Dynamic maintenance policy |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本論文針對設備裝置有多個敏銳偵測儀器提出所謂之動態預防保養政策:透過偵測儀器可以於每個偵測時間點nd, n=0,1,2,3,…即時偵測設備的多個不同偵測參數數值,透過電腦中心可即時求算出設備之健康指標(Health Index,簡稱 H )而該H值可對應到一設備之狀態,並將該設備狀態值儲存於系統資料庫內,依據在nd時刻之設備狀態,以每個循環的總保養成本最低之原則,於該nd時刻決定出該採取之最佳保養動作。
本論文透過即時之H數值可判斷出設備狀態,且設備各個狀態下有多種保養動作可供選擇執行。本論文需假設設備之狀態轉換機率為一固定轉換機率矩陣,即設備之狀態轉換 為馬可夫鏈。依據不斷更新之設備運轉資料可估算出即時的設備狀態轉換機率及各保養動作的風險率,因此設備狀態轉換機率隨時更新。
具體言之,本保養策略與其他(偵測環境下)預防保養策略不同的地方在於本策略為一隨時間變動的動態保養策略,而非不隨時間變動的保養策略,且由於設備狀態轉換機率隨時更新,因此設備的轉換機率實際非為一固定值,此亦是一般企業可透過設備的歷史資料建構出隨時間變動的狀態轉換機率而搭配本保養策略,則可產生一實用的保養策略。
關鍵字:健康指標(Health Index)、多種保養動作(Multiaction)、動態保養策略。
Abstract
The purpose of this dissertation provides a dynamic preventive maintenance policy for the equipment inspected by sensors. The sensors can inspect several parameters of the equipment which can be generate a Health Index (H) in real time at each inspecting time nd, n=0,1,2,3…The H will be translated into equipment status and saved in the system database. According to the equipment status, we can decide the best preventive actions at time nd by the rule of the lowest total maintenance cost per cycle.
The state of the equipment can be charge by H. Each state of the equipment has several preventive actions to choose. We suppose the state transition probability of the equipment as a steady state transition probability matrix, which means the state of the equipment is a Markov chain. Base on continuing updated H value, we can estimate the state transition probability of the equipment and the risk rate of each preventive action at every nd n=0,1,2,3…. As a result, the state transition probability of the equipment will be updated with nd.
In brief, the major differences between this preventative policy and others are that this one policy is updated by time and the state transition probability of the equipment can be updated by time. Therefore, the enterprise can base on the equipment historical data to generate the updated transition probability with time, and follow the methodology as we mention above then it can build up an useful maintenance policy.
Key word: Health index, Multiaction, Dynamic maintenance policy.
參考文獻
[1] Barlow, R., and Hunter, L., “Optimal Preventive Maintenance Policies”, Operations Research 8 (1960) 90-100.
[2] Chiang, J.H., and Yuan, J., “Optimal maintenance policy for a Markovian system under periodic inspection”, Reliability Engieering and System Safety 71 (2001) 165-172.
[3] Cunnungham, C., “NTRS Factory Integration. 1997 Update”, Proceedings SEMATECH AEC/APC Workshop Ⅸ (1997) 2-11.
[4] Derman, C., “On Sequential Decisions and Markov Chain”, Management Science 9 (1962) 16-24.
[5] Hopp, W. J., and Wu, S.C., “Multiaction Maintenance under Markovian Deterioration and Incomplete State Information”, Naval Research Logistics 35 (1988) 447-462 .
[6] Jardine, A.D.S., Banjevic, D., and Makis, V., “Optimal Replacement Policy and the Structure of Software for Condition-based Maintenance” , Journal of Quality in Maintenance Engineering 3 (1997) 109-119.
[7] Kijima, M., Morimura, H., and SUZUKI, Y. “Periodical replacement problem without assuming minimal repair”, European Journal of Operation Research 37 (1988) 194-203.
[8] Kumar, D., and Klefsjo, B., “Proportional hazards model: a review”, Reliability Engineering and System Safety 44 (1994) 177-188.
[9] Lam, Y., “An optimal maintenance model using a number of difference actions”, Microelectron. Reliab. 37 (1997) 615-622.
[10] Lam, C.T., and Yeh, R.H., “Optimal Maintenance-Policies For Deterioration Systems Under Various Maintenance Strategies”, IEEE Transactions on Reliability 43 (1994) 423-430.
[11] Lee, S.F., and Spanos, C.J., “Prediction of Wafer State After Plasma Processing Using Real-Time Tool Data”, IEEE Transactions on semiconductor manufacturing 8 (1995).
[12] Love, C.E., and Guo, R., “Using proportional hazard modelling in plant maintenance”, Quality and Reliability Engineering international 7 (1991) 7-17.
[13] Makis, V., and Jardine, A.K.S., “Computation of Optimal Policies in Replacement Models”, Journal of Mathematics Applied in Business & Industry 3 (1992) 169-175.
[14] Pintelon, L.M., and Gelders L.F., “Maintenance management decision making”, European Journal of Operation Research 58 (1992) 301-307.
[15] Sim, S.H., and Endrenyi, J., “Optimal Preventive Maintenance with Repair”, IEEE Transactions on reliability 37 (1988) 92-96.
[16] Su, C.T., Wu, S.C., and Chang, C.C., “Multiaction maintenance subject to action-dependent risk and stochastic failure”, European Journal of Operational Research 125 (2000) 133-148.
[17] Taam, W., Subbaiah, P., and Liddy, J.W. “A Note on Multivaraite Capability Indices” Working paper, Dept. mathematical Sciences, Oakland University, Rochester MI, 1991.
[18] Taylor, H.M., and Karlin, S., “An introduction to Stochastic modeling”, Academic Press, Inc, revised edition, 1994.
[19] Wildeman, R. E., Dekker, R., and Smit, A.C.J.M., “A dynamic policy for grouping maintenance activities”, European Journal of Operation Research 99 (1997) 530-551.
[20] Wood, A.P., “Optimal Maintenance Policies for Constantly Monitored System”, Naval Research Logistics 35 (1988) 461-471.
[21] Yurtsver, T., and Comerford, M., “Equipment Management System (EMS)”, IEEE/SEMI Advanced Semiconductor Manufacturing Conference (1995).
[22] 吳耿碩,陳正剛,郭瑞祥,「及時機台健康狀況以及動態預防策略」,國立台灣大學工業工程學研究所碩士論文1999.
[23] 郭瑞祥,陳正剛,曾傳蘆,馮蟻剛,楊斌虎,李俊霖,吳慶鴻,林雪蘭,黃順傑,李益青,張聖規,李明益, “A real-time equipment monitoring and fault detection system”, Semiconductor Manufacturing Technology Workshop (1998) 111-121.
[24] 蔣瑞祥,阮約翰,「退化製造系統維修策略之研究」,清華大學工業工程管理學系博士論文,2000.