研究生: |
黃書葦 Huang, Shu-Wei |
---|---|
論文名稱: |
碳量子點的新穎純化方法及新應用 A Novel Purification method for carbon quantum dots for new application |
指導教授: |
凌永健
Ling, Yong-Chien |
口試委員: |
余靖
Yu, Chin 趙奕姼 Chao, Ito |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 碳量子點 、環氧樹脂 、純化 、吸附劑 、顯影 |
外文關鍵詞: | Carbon quantum dots, Epoxy, Purification, Adsorbent, Imaging |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究共分為三個部分進行實驗探討,第一部分研究廢棄環氧樹脂製成碳量子點方法,使用C18固相吸附劑萃取作為新型的純化方式,比較清洗(Washing)與洗脫(Elution)階段得到之碳量子點,推測其純化機制主要為非極性間作用力,透過碳量子點與吸附劑產生作用力完成純化,相較傳統的透析純化方式,C18吸附劑萃取淨化方法具有便宜、時間短、較低的溶劑用量且便於濃縮等優點。
第二部分探討碳量子點生成機制,藉由改變不同的反應時間搭配高效能液相層析儀-螢光偵測器分析,證實碳量子點的生成機制為由下而上合成,層析圖譜中觀察到兩個分別在滯留時間4分鐘與8分鐘出現的特徵峰,意味著中極性(4分鐘)與非極性(8分鐘)兩種碳量子點,反應開始進行後的10分鐘極性特徵峰會逐漸變大,且在10分鐘後開始縮小,非極性特徵峰則是在反應10鐘後逐漸變大,此結果可推斷在前10分鐘為成核階段,隨著成核的完成則開始成長(10分鐘之後),因此推斷拉長反應時間,會使其變大且傾向非極性。
第三部分探討自行製備碳量子點對汞離子的選擇性和吸附作用,開展固相萃取方法應用在水中汞離子的淨化與吸附濃縮以及塑膠微粒的顯影應用,作為新型純化方式製備得到的碳量子點的新應用範例。
This study is divided into three parts. In the first part, we have developed a new purification method for carbon quantum dots (CQDs). The mechanism can be inferred that the interactions between CQDs and adsorbent mainly rely on non-polar, hydrophobic effect by compare washing and elution step of solid phase extraction. In comparison to conventional “dialysis method”, solid phase extraction offers many advantages , such as low cost , fast , time and solvent saving, and easy to concentrate.
The second part is about the formation mechanism of CQDs. The bottom-up approach is discussed by changing the reaction time and coupled with HPLC-FLD analysis. In the HPLC-FLD, there are two peaks at retention time 4 and 8 min, which correspond to middle polar and non-polar compound, respectively. After 10 min reaction time, the intensity of the middle polar peak increases with increasing reaction time and starts to decrease thereafter. The intensity of another non-polar compound peak starts to increase after 10 min. The results demonstrate that the formation of CQDs is at nucleation stage during the first 10 min followed by growth reaction thereafter. Therefore, CQDs trend to become nonpolar and large by elongation of the reaction time.
Finally, CQDs have shown great selectivity to Hg2+, and can be used as an adsorbent for Hg2+. By coupling CQDs and SPE, the Hg2+ adsorption property of CQDs can be used for water purification by selective adsorbent of Hg2+. Furthermore, CQDs can also be used as imagine agent for microplastic imaging.
1. 黃孟嬌(2017)。全球暨我國LED照明發展趨勢。
https://www.greentrade.org.tw/zh-hant/structure/filedl/24803/22719
Accessed 2019/06/02
2. 行政院環保署。廢照明光源回收貯存清除處理方法及設施標準(民國105年10月25日)
3. Huang, J. C.; Chu, Y. P.; Wei, M.; Deanin, R. D. Adv. Polym. Tech. 2004, 23, 298-306.
4. Diederich, F.; Thilgen, C. Science. 1996, 271, 317-324.
5. Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A. Science. 2002, 297, 787-792.
6. Geim, A. K. Science. 2009, 324, 1530-1534.
7. Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. J. Am. Chem. Soc. 2004, 126, 12736-12737.
8. Liu, M. L.; Chen, B. B.; Li, C. M.; Huang, C. Z. Green Chem. 2019, 21, 449-471.
9. Galceran, M. T.; Jáuregui, O. Anal. Chim. Acta. 1995, 304, 75-84.
10. Heberer, T.; Stan, H. J. Anal. Chim. Acta. 1997, 341, 21-34.
11. Schmidt, L.; Sun, J. J.; Fritz, J. S.; Hagen, D. F.; Markell, C. G.; Wisted, E. E. J. Chromatogr. 1993, 641, 57-61.
12. Li, N.; Lee, H. K. Anal. Chem. 1997, 69, 5193-5199.
13. Moghimi, A.; Yari, M. J. Chem. Rev. 2019, 1, 1-18.
14. Pacyna, J. M.; Münch, J. Water, Air, Soil Pollut. 1991, 56, 51-61.
15. Seigneur, C.; Vijayaraghavan, K.; Lohman, K.; Karamchandani, P.; Scott, C. Fuel Process. Technol. 2004, 85, 441-450.
16. Kim, M. K.; Zoh, K. D. J Prev Med Public Health. 2012, 45, 335.
17. Clarkson, T. W.; Magos, L.; Myers, G. J. New Engl J Med. 2003, 349, 1731-1737.
18. Ziemba, S. E.; McCabe Jr, M. J.; Rosenspire, A. J. Toxicol. Appl. Pharmacol. 2005, 206, 334-342.
19. Dittmar, T.; Koch, B.; Hertkorn, N.; Kattner, G. Limnol Oceanogr-Meth. 2008, 6, 230-235.
20. Kraševec, I.; Prosen, H. Molecules. 2018, 23, 2501.
21. Boundy, M. J.; Selwood, A. I.; Harwood, D. T.; McNabb, P. S.; Turner, A. D. J. Chromatogr. A. 2015, 1387, 1-12.
22. Sun, C.; Zhang, Y.; Sun, K.; Reckmeier, C.; Zhang, T.; Zhang, X.; Rogach, A. L. Nanoscale. 2015, 7, 12045-12050.
23. Zhao, Y.; Zhang, Y.; Liu, X.; Kong, H.; Wang, Y.; Qin, G.; Qu, H. Sci. Rep. 2017, 7, 4452.
24. Chen, C. Y.; Tsai, Y. H.; Chang, C. W. New J. CHEM. 2019, 43, 6153-6159.
25. Habiba, K.; Makarov, V. I.; Weiner, B. R.; Morell, G. (2014). Fabrication of nanomaterials by pulsed laser synthesis. Manufacturing Nanostructures, One Central Press, Manchester, UK.
26. Gonçalves, H.; Jorge, P. A.; Fernandes, J. R. A.; da Silva, J. C. E. Sens. Actuators, B. 2010, 145, 702-707.
27. Ahirwar, S.; Mallick, S.; Bahadur, D. ACS Omega 2017, 2, 8343-8353.
28. Qiao, Z. A.; Wang, Y.; Gao, Y.; Li, H.; Dai, T.; Liu, Y.; Huo, Q. Chem. Commun. 2010, 46, 8812-8814.
29. Wang, C.; Xu, Z.; Cheng, H.; Lin, H.; Humphrey, M. G.; Zhang, C. Carbon. 2015, 82, 87-95.
30. Zhai, X.; Zhang, P.; Liu, C.; Bai, T.; Li, W.; Dai, L.; Liu, W. Chem. Commun. 2012, 48, 7955-7957.
31. Ma, Z.; Ming, H.; Huang, H.; Liu, Y.; Kang, Z. New J. Chem 2012, 36, 861-864.
32. Dang, D. K.; Sundaram, C.; Ngo, Y. L. T.; Chung, J. S.; Kim, E. J.; Hur, S. H. Sens. Actuators, B. 2018, 255, 3284-3291.
33. Zhu, A.; Qu, Q.; Shao, X.; Kong, B.; Tian, Y. Angew. Chem. Int. Ed. 2012, 51, 7185-7189.
34. Gong, X.; Zhang, Q.; Gao, Y.; Shuang, S.; Choi, M. M.; Dong, C. ACS Appl. Mater. Interfaces. 2016, 8, 11288-11297.
35. Bhunia, S. K.; Nandi, S.; Shikler, R.; Jelinek, R. Nanoscale 2016, 8, 3400-3406.
36. Huang, S. W.; Lin, Y. F.; Li, Y. X.; Hu, C. C.; Chiu, T. C. Molecules 2019, 24, 1785.
37. Zhang, J.; Zhang, X.; Dong, S.; Zhou, X.; Dong, S. J. Photochem. Photobiol. 2016, 325, 104-110.
38. Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. Nano Res. 2015, 8, 355-381.
39. Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lee, S. T. Angew. Chem. Int. Ed. 2010, 49, 4430-4434.
40. Jin, S. H.; Kim, D. H.; Jun, G. H.; Hong, S. H.; Jeon, S. ACS nano 2013, 7, 1239-1245.
41. Zhang, Y. L.; Wang, L.; Zhang, H. C.; Liu, Y.; Wang, H. Y.; Kang, Z. H.; Lee, S. T. RSC Adv. 2013, 3, 3733-3738.
42. Schiffman, J. D.; Balakrishna, R. G. Sens. Actuators, B. 2018, 258, 1191-1214.
43. Shi, Y.; Li, C.; Liu, S.; Liu, Z.; Zhu, J.; Yang, J.; Hu, X. RSC Adv. 2015, 5, 64790-64796.
44. Ding, L.; Yang, H.; Ge, S.; Yu, J. Spectrochimica Act A. 2018, 193, 305-309.
45. Wang, J.; Yang, D.; Gao, X.; Wang, X.; Li, Q.; Liu, Q. J. Exp. Nanosci. 2018, 13, 11-26.
46. Labay, C.; Canal, C.; Rodríguez, C.; Caballero, G.; Canal, J. M. Appl. Surf. Sci. 2013, 283, 269-275.
47. Xu, C.; Wu, D.; Lv, Q.; Yan, L. J. Phys. Chem. C. 2017, 121, 18615-18624.
48. Chiang, Y. C.; Lee, C. Y.; Lee, H. C. Mater. Chem. Phys. 2007, 101, 199-210.
49. Malgras, V.; Nattestad, A.; Yamauchi, Y.; Dou, S. X.; Kim, J. H. Nanoscale 2015, 7, 5706-5711.
50. Briggs, D. (1998). Surface analysis of polymers by XPS and static SIMS. Cambridge University Press.
51. Xu, X.; Chu, H.; Zhang, Z.; Dong, P.; Baines, R.; Ajayan, P. M.; Ye, M. ACS Appl. Mater. Interfaces. 2017, 9, 32756-32766.
52. Wang, Y.; Shen, Y.; Zhang, Y.; Yue, B.; Wu, C. J Macromol Sci B 2006, 45, 563-571.
53. Gunasekaran, S.; Sailatha, E.; Seshadri, S.; Kumaresan, S. Indian J Pure Ap Phy. 2009, 47, 12-18.
54. Johnson, L. M.; Gao, L.; Shields IV, C. W.; Smith, M.; Efimenko, K.; Cushing, K.; López, G. P. J Nanobiotechnol. 2013, 11, 22.
55. Trivedi, M.; Branton, A.; Trivedi, D.; Shettigar, H.; Bairwa, K.; Jana, S. Nat Prod Chem Res. 2015, 3.
56. Coates, J. (2006). Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry: applications, theory and instrumentation.
57. Lu, Y. C.; Chen, J.; Wang, A. J.; Bao, N.; Feng, J. J.; Wang, W.; Shao, L. J. Mater. Chem. C. 2015, 3, 73–78.